環境配慮コンクリートの実構造物への適用に向けた部材性能検証と中央分離帯への適用

大成建設(株) 正会員 〇目黒 貴史, 正会員 近藤 祥太

正会員 宮原 茂禎, 正会員 松元 淳一

正会員 吉田 昂平, 正会員 村田 裕志

フェロー会員 畑 明仁

阪神高速道路(株) 正会員 西原 知彦

1. はじめに

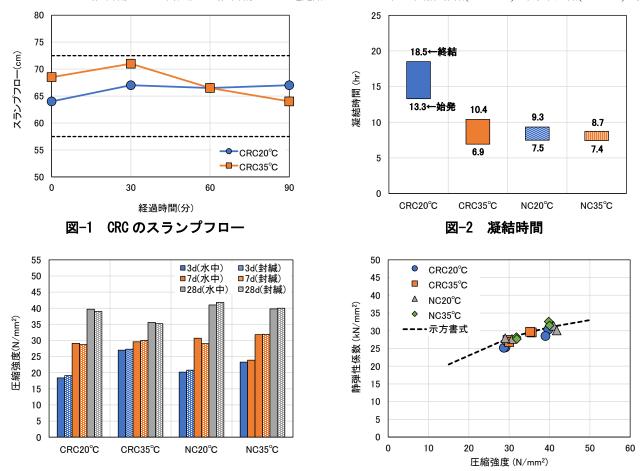
カーボンニュートラル社会の実現に向け、社会インフラの構築において重要な建設資材であるコンクリートでも CO_2 排出の削減が求められる ¹⁾. コンクリート製造に関連する CO_2 排出量の大部分はポルトランドセメントの製造に起因するため、 CO_2 排出原単位がポルトランドセメントよりも小さいコンクリート用混和材で置換することによって、排出量を削減することができる.

著者らは、混和材に高炉スラグ微粉末を大量に使用してポルトランドセメントの使用量をゼロとすることにより、材料製造に起因する CO_2 排出量を通常のコンクリートと比較して 80%程度削減できる環境配慮コンクリートを開発している $2^{\sim}6$. 一方で、温暖化対策として CO_2 の資源化技術の開発が進められており、 CO_2 を炭酸塩として固定した材料の生産と活用が望まれている. 製造技術としては、排ガス等の CO_2 を産業副産物や廃棄物のカルシウムに吸収・固定して合成炭酸カルシウムを製造する CCU (Carbon dioxide Capture and Utilization) 技術がある. 著者らは、セメントを使用しないコンクリートに CCU 技術で製造した合成炭酸カルシウムを混合して、 CO_2 を内部に固定することで材料起因の CO_2 排出量がマイナスとなるカーボンネガティブを実現したカーボンリサイクル・コンクリート (以下、CRC) を開発して普及に取り組んでいる $7^{\sim}13$). CRC はこれまで主にプレキャスト製品における検討と実部材への適用を行ってきたが、用途拡大のためには場所打ち施工まで適用範囲を拡げることが求められた.

本報では共同研究の一環として、CRC を都市高速道路の中央分離帯に場所打ちで試験施工した国内初の適用事例を報告する. 試験施工にあたっては、事前に材料試験および構造試験によって、CRC の強度発現性、収縮特性および構造性能を評価し、普通ポルトランドセメントを用いた普通コンクリートと比較を行った. また、コンクリートの品質および構造物としての長期の品質を確認することを目的として、試験施工後は供用開始まで実構造物においてモニタリングを実施するとともに、試験施工時に作製した CRC のテストピースおよび試験施工と同時期に別途製作したモックアップ試験体を屋外に暴露してモニタリングを実施した.

2. 材料試験および構造試験による事前検討

(1) 環境温度を変えた室内試験


a)実験概要

試験適用が暑中期であったことから、室内による材料試験では 20° C環境だけではなく、暑中期を想定した 35° C環境においても実施した. コンクリートの配合を表-1 に示す. CRC の結合材には高炉スラグ微粉末とカルシウム系刺激材を使用し、さらに CCU 技術で製造した合成炭酸カルシウムを混和したものを粉体とした. 普通コンクリート (以下, NC) の結合材には普通ポルトランドセメントと 20 型膨張材を使用した. 化学混和剤には、CRC では高性能 AE 減水剤、AE 剤、遅延剤、収縮低減剤および硬化促進剤を、NC では AE 減水剤および AE 剤を使用した. 練混ぜは水平 2 軸形強制練りミキサを用いて 20° C環境で実施し、 35° C環境の練混ぜでは材料を 35° C環境の恒温槽で直前まで保管した. CRC の品質目標値としては、設計基準強度 $27N/mm^2$ 、スランプフロー $65.0\pm7.5cm$ 、空気量 $6.0\pm1.5\%$ とした. 供試体は練混ぜ後に作製し、材齢 2 日で脱型後、 20° C環キーワード 環境配慮コンクリート、カーボンリサイクル、合成炭酸カルシウム、中央分離帯、場所打ち施工連絡先 $\mp245-0051$ 神奈川県横浜市戸塚区名瀬町 344-1 大成建設 (株) 技術センター TEL045-814-7221

表-1 コンクリート配合

対象	配合	W/B (%)	s/a (%)	コンクリート単位量(kg/m³)							混和剤添加率(P×%)*		
				水 W	粉体:P			Vm	-kn				
					結合材:B			合成	細 骨	粗 骨	AD	AD	AD
					普通 セメント	膨張材	CRC 結合材	炭酸 カルシウム	材	材	1	2	3
2.1 節 室内試験	CRC20°C	55	43	175	_	_	318	260	621	856	_	0.75	0.20
	CRC35°C										_	0.75	0.30
	NC20°C	55	43	155	262	20	_	_	792	1090	1.00	_	_
	NC35°C										1.20	_	_
2.2 節 構造試験	CRC	55	43	175	ı	_	318	260	632	878	_	0.75	0.35
	NC	55	43	155	262	20	_	_	805	1096	1.00	_	
3章 中央分離帯	CRC	55	43	175	ı	_	318	260	621	862	_	0.72~ 0.85	0.35
4章 モックアップ	CRC	55	43	175	_	_	318	260	621	862	_	0.74	0.35

※AD1: AE 減水剤, AD2: 高性能 AE 減水剤, AD3: 遅延剤. CRC はこの他に収縮低減剤(0.52 P×%)と硬化促進剤(1.00P×%)を使用

境の恒温室または35℃環境の恒温槽において所定の材齢まで養生した.

圧縮強度

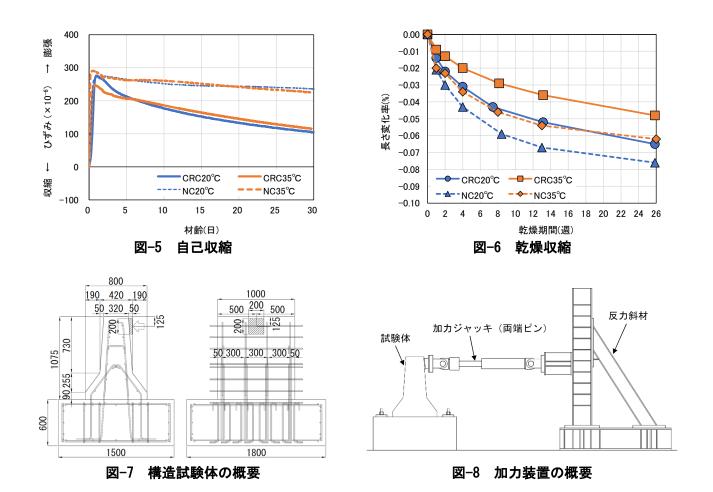

b) フレッシュ性状および強度特性

図-3

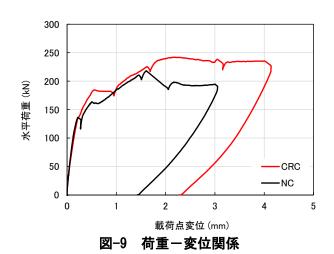
スランプフローの経時変化を**図-1** に示す. 20℃環境だけでなく、35℃環境でも混和剤量の調整により目標のスランプフローを満足した. 凝結時間の結果を**図-2** に示す. CRC の凝結時間は NC に比べて、20℃環境では 2 倍程度遅かったが、35℃環境では同程度であった. 圧縮強度の結果を**図-3** に示す. CRC および NC ともに水中養生と封緘養生のちがいによる差はみられなかった. CRC の強度発現性は、20℃環境では NC と同程度であったが、35℃環境では NC よりも材齢 3 日で約 3N/mm² 高く、材齢 28 日で約 4N/mm² 低かった. 環境温度が高い場合には、高炉スラグが初期から反応したことでその後の反応が緩慢になったことにより 14、強度増進効果が NC に比べて小さくなったと考えられる. 材齢 7 日および 28 日の圧縮強度と静弾性係数の関係を**図-4** に示す. これらは、CRC および NC ともに土木学会のコンクリート標準示方書 15)の推定式と同等だった.

図-4

圧縮強度と静弾性係数の関係

c) 収縮特性

 $10\times10\times40$ cm の供試体の中心にひずみ計を埋め込んで計測した自己収縮の結果を**図-5** に示す.供試体は打設後から 20°Cまたは 35°C環境で保管し、自己収縮の起点は凝結の始発時間とした.最大膨張量は環境温度によらず CRC および NC ともに $250\sim300\times10^6$ でほぼ同等であった.膨張後の収縮は CRC のほうが 150×10^6 程度大きかったが、十分な膨張が確保された.


乾燥収縮の結果を**図-6** に示す. 供試体は材齢 7 日まで 20℃環境または 35℃環境の水中で養生し、乾燥期間 は 20℃環境で保管した. CRC の乾燥収縮は NC に比べて小さく, いずれも養生温度が高いほど小さくなった. 養生温度が高い場合には、材齢初期からセメントや高炉スラグの反応が進むため、材齢 7 日以降の反応が緩慢になったことで乾燥収縮が小さくなったと推察される.

(2) 静的載荷試験による構造試験

a)実験概要

構造試験用の試験体概要を**図-7**に示す. 試験体は標準的な RC 製の中央分離帯をモデル化したものであり、下部のフーチング部と試験区間となる中央分離帯で構成した. 中央分離帯の長さは 1.0m で、使用している鉄筋はすべて D13 および SD345 とした. 加力装置の概要を**図-8**に示す. フーチング部を貫通させた PC 鋼棒を緊張することで試験体を反力床に固定し、水平反力のための斜材と試験体頭部を両端ピンの加力ジャッキで接続した. 加力点は**図-7**に示すように頂部から 125mm の位置とし、200×200mm の載荷板を介して水平加力を実施した.

CRC および NC における中央分離帯部分の試験体の配合を表-1 に示す. CRC は移動式コンクリート製造プラントで練り混ぜて製作し、NC は市中プラントで練り混ぜて製作した. CRC の品質目標値は 2. (1) と同様とした. 養生は現場での試験施工を想定し、CRC は材齢 11 日の脱型まで湛水養生、NC は材齢 7 日の脱型まで封緘養生を行い、脱型後は載荷試験時までシート養生を行った. 載荷試験は、CRC を材齢 28 日、NC を材齢 29 日で実施した.

赤枠は顕著なひび割れを示す

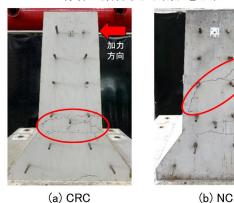


写真-1 載荷試験後のひび割れ状況

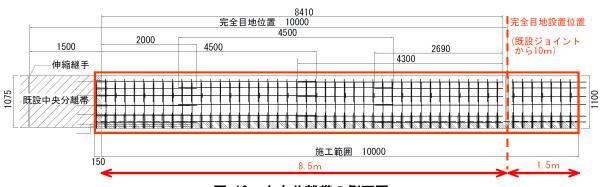


図-10 中央分離帯の側面図

b) 構造性能

載荷試験日の小型試験体における圧縮強度は CRC で 36.6N/mm^2 , NC で 37.2N/mm^2 であり、割裂引張強度は CRC で 3.04N/mm^2 , NC で 3.12N/mm^2 であり、強度は同等であった.

荷重-変位関係を**図-9** に、載荷試験後のひび割れ状況を**写真-1** に示す。CRC では、185kN でハンチ上側にひび割れが発生および進展し、225kN でハンチ上部分において主鉄筋が降伏ひずみに達した。242kN で最大荷重を示し、その後は荷重がほぼ変化せずに**写真-1 (a)** の赤枠で示したハンチ上部分のひび割れが開口した。一方、NC では、125kN でハンチ上側にひび割れが発生し、160kN でそのひび割れが進展、203kN でハンチ上部分において主鉄筋が降伏ひずみに達した。その後 218kN で最大荷重を示し、**写真-1 (b)** の赤枠で示した斜めひび割れが発生して荷重が低下した。

今回対象とした中央分離帯は SC 種であり、車両衝突による設計荷重は 35kN である. CRC および NC の最大荷重は、設計荷重を大幅に上回っていたことから、十分な安全性を確認できた. 破壊形態に関しては、CRC では曲げ破壊、NC ではせん断破壊となった. 小型試験体における強度がほぼ同等であったにもかかわらず破壊形態に違いが生じた要因としては、**図-6** で示したように NC のほうが乾燥収縮ひずみが大きく、収縮が内部鉄筋に拘束されたために試験体内のコンクリートの見かけの引張強度が低下した可能性が考えられる.

3. 中央分離帯への試験適用

(1) 中央分離帯の概要

CRC を試験適用した中央分離帯の側面図を**図-10** に示す。上部工の形式は 15 径間連続 PC ゲルバー橋であり、CRC の試験適用区間は延長 10m の RC 構造物である。 打設量は $5.2m^3$ であり、10 バッチの 9 層打ちで打設する計画とした。また、打設区画の都合により、既設ジョイントから 10m の位置(CRC の適用区間の 8.5m 位置)に完全目地を設けた。

(2) コンクリート配合および練混ぜ

CRC の配合を表-1 に示す. CRC1m3 における CO2 排出量は使用材料の排出原単位の公表値 4, 16)と配合から

練混ぜ状況

写真-4 湛水養生の状況

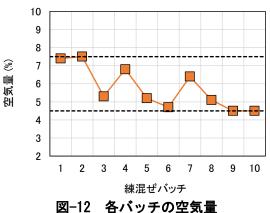


写真-3 打設状況

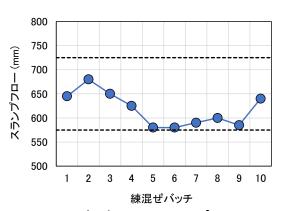


図-11 各バッチのスランプフロー

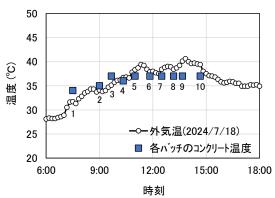


図-13 各バッチのコンクリート温度および外気温

積上げ法により計算し, マイナス 20kg/m³ となった. CRC の品質目標値は 2. (1) と同様とし, 所定のフレッシ ュ性状を得られるように混和剤の添加率によって調整した.

場所打ち施工における練混ぜ状況を写真-2に示す. コンクリートの製造は移動式コンクリート製造プラン トを使用して橋梁上にて行い、1 バッチあたりの練混ぜ量は 0.7m³ とした. 各バッチの練混ぜ直後のスランプ フローを \mathbf{Z} -11 に, 空気量を \mathbf{Z} -12 に, 打設当日の各バッチのコンクリート温度および外気温を \mathbf{Z} -13 に示す. 中央分離帯の打設当日は外気温が 30℃を超える暑中期の施工であり、3 バッチ目以降の外気温は 35℃を超え る環境であった. 外気温の上昇によって, スランプフローと空気量はやや低下する傾向にあったが, 混和剤の 添加率を 0.72%から 0.85%の範囲内で調整することで目標値を満足した.

(3) 中央分離帯の施工

練り混ぜた CRC をバケットで打設した状況を写真-3に、打設後の湛水養生の状況を写真-4に示す. 打設後 は、暑中期で高温による天端からの乾燥を防ぐために、材齢 11 日の脱型まで湛水養生を行った. 品質管理試 験における CRC の圧縮強度は設計基準強度 27N/mm² に対して, 材齢 7 日で 25.9N/mm², 材齢 28 日で 30.8N/mm² を示し、設計通りの強度を満足した. 材齢7日から28日にかけての強度増進は5N/mm2程度であり、室内試

写真-5 中央分離帯の完成状況

験と同様の傾向であった. 打設当日は高温環境下で あったことから, 高炉スラグの反応が材齢初期から 進んだため強度増進が小さかったものと推察される.

中央分離帯の完成状況を**写真-5** に示す. 脱型時の目視観察では暑中期の施工で懸念されたコールドジョイントは発生しなかったことを確認した. これらの結果から, CRC は通常のコンクリートと同様に, 従来の手順で場所打ち施工が可能であることを確認した.

4. 試験適用後のモニタリング

(1) モニタリング概要

コンクリートの品質および構造物としての長期の 品質を確認することを目的として,実構造物の中央 分離帯のほかに,テストピースおよびモックアップ 試験体を屋外に暴露してモニタリングを行った.

中央分離帯のモニタリングは**写真-5** に赤枠で示した 1.5m 区間において,ハンチ付近のコンクリート内部にひずみ計と有効応力計を埋設するとともに,表面では Torrent 法 17 による表層透気試験を実施した.モニタリングの期間は,施工後から供用が再開するまでの 3 ヶ月間とした.

写真-6 テストピースの暴露状況

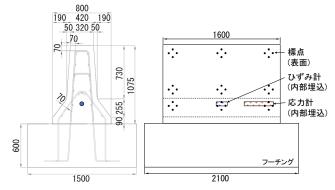
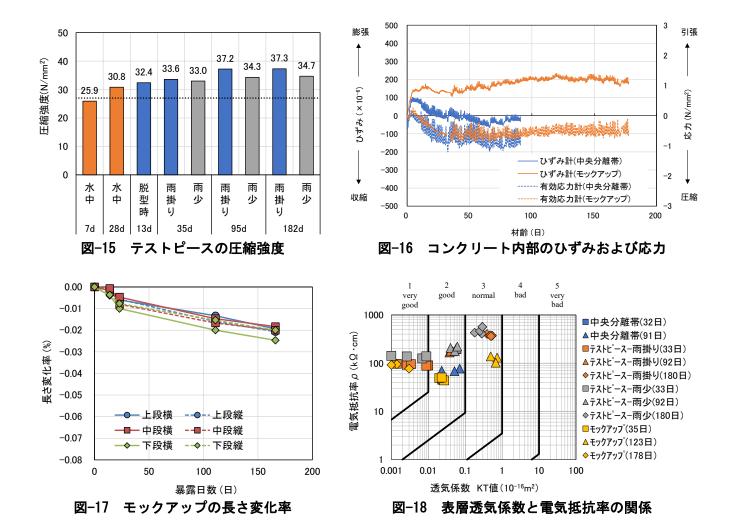



図-14 モックアップの概略図

テストピースの暴露状況を**写真-6** に示す. テストピースは中央分離帯の試験適用時に採取した ϕ 10×20cm の円柱供試体および 15cm 立方の角柱供試体を現場にて封緘養生したうえで湿潤マットで覆った. その後は材齢 11 日で脱型し、都市内の社屋屋上に運搬して、**写真-6** に示す雨掛かりのある場所(雨掛り)と高架橋桁下の雨掛かりの少ない場所(雨少)の 2 箇所に暴露し、圧縮強度試験および表層透気試験を実施した.

モックアップの概略図を**図-14** に示す.壁部の断面や配筋は本設の中央分離帯と同一とし,延長は 1.6m とした.フーチングには 30-15-20N の普通コンクリートを使用し,フーチングの打設から 15 日後に**表-1** に示す CRC の配合で壁部(中央分離帯部分)を施工した.なお,モックアップは中央分離帯の試験施工と同時期に製作し,壁部のコンクリートの製造方法および養生方法も試験施工時と同一とした.施工後は壁部の材齢 35 日から都市内の路下用地で屋外暴露を開始した.測定項目は中央分離帯と同様にハンチ付近のコンクリート内部に埋設したひずみ計と有効応力計,表面での表層透気試験に加えて,脱型後の壁部表面の上段,中段,下段(ハンチ部)に標点を設置して長さ変化を計測した.テストピースおよびモックアップのモニタリングは数年間の長期で予定しており,現時点では暴露開始から 6 ヶ月後まで実施した.

(2) モニタリング結果

施工時に採取したテストピースの圧縮強度を**図-15** に示す. 材齢 13 日 (脱型は材齢 11 日)の圧縮強度は 32.4N/mm²で設計基準強度の 27N/mm²を満足するとともに、水中養生の材齢 28 日と同等の強度が得られた. 品質管理試験用のテストピースは 20°C環境の水中養生であったのに対して、暴露用のテストピースは脱型まで暑中期の現場で養生したため、強度発現が早くなったと推察される. 暴露 3 ヶ月以降の圧縮強度を暴露箇所ごとに比較した場合、雨掛かりがある場所のほうが 3N/mm²程度大きくなり、暴露 6 ヶ月時点においてもその 差は変化しなかった. この要因としては、雨掛かりによる水分の供給があったことで、暴露 3 ヶ月までの早期では高炉スラグの反応が進み、強度が増進したものと考えられる.

中央分離帯およびモックアップに埋設したひずみ計と有効応力計の計測結果を**図-16** に示す. 中央分離帯は膨張ひずみを示した後に収縮してひずみはゼロ程度となったが,モックアップは膨張ひずみを示した後に横ばいで推移した. 中央分離帯では床版からの拘束を受けやすいため,収縮したものと推察した. また,中央分離帯とモックアップのいずれも有効応力計では圧縮応力が作用しており,同程度であった.

モックアップに標点を設置して計測した表面の長さ変化率を**図-17**に示す.各計測位置における長さ変化率はいずれも0.02%程度の収縮であり、各標点の高さ位置および縦横方向に大きな差異はみられなかった.また、大きな乾燥収縮は生じておらず、**図-16**に示した初期の膨張と合わせたひずみはゼロ前後であると考えられた.

Torrent 法で測定した表層透気係数と Wenner の四電極法で測定した電気抵抗率の関係を**図-18** に示す. 中央分離帯およびモックアップにおける測定はハンチを除く壁部の高さ中央部で行った. 中央分離帯とテストピースにおける透気係数 KT 値および電気抵抗率は材齢とともに増加する傾向があり, 通常のコンクリートと同様に乾燥の影響を受けたものと考えられる. モックアップの長期材齢では同様の傾向がみられなかったが, 測定日が異なるため天候による含水状態の違いなどが影響している可能性も考えられた. また, Torrent 法による

試験では、透気係数 KT 値が小さいほどコンクリート表層が緻密であり良好な品質であるとされ、5 段階のグレードで透気性が評価される ¹⁸⁾。今回の結果ではグレード 1 (very good) からグレード 3 (normal) の間にあり、コンクリートの表層品質に問題がないことを確認した。表層品質が緻密である場合には外部からの有害物質の侵入を抑制できるため、耐久性の向上につながると考えられる。

5. まとめ

CO₂ 排出量がマイナスとなるカーボンネガティブを実現したカーボンリサイクル・コンクリートに関して、 国内で初めて都市高速道路の中央分離帯に場所打ちで試験施工した.

配合および施工法の事前の検討により、外気温が 30°Cを超える暑中期においても適切な施工管理を実施して中央分離帯を打設・構築できたことで、通常のコンクリートと同様に従来の手順で場所打ち施工できることを確認した. 供用開始後もテストピースおよびモックアップによるモニタリングを実施しており、コンクリートの品質および構造物としての長期の健全性を継続して確認する.

参考文献

- 1) 野口貴文: 2050 年カーボンニュートラルに対するコンクリートの挑戦, JICE Report, 2023.
- 2) 荻野正貴ほか:ポルトランドセメント使用量ゼロの環境配慮コンクリートの開発,大成建設技術センター報, No.46, pp.13-1~13-7, 2013.
- 3) 宮原茂禎ほか:高炉スラグ微粉末とカルシウム系刺激材を使用した環境配慮型コンクリートの水和反応と組織 形成,コンクリート工学年次論文集,Vol.35,No.1,pp.1969-1974,2013.
- 4) 大脇英司ほか:環境配慮コンクリートの基本性状,大成建設技術センター報, No.47, pp.06-1~06-7, 2014.
- 5) 堀口賢一ほか: 低炭素型コンクリートを使用したコンクリート二次製品の開発, コンクリート工学年次論文集, Vol.38, No.1, pp.213-218, 2016.
- 6) 松元淳一ほか: 環境配慮コンクリートを使用したセグメントの性能評価, コンクリート工学年次論文集, Vol.43, No.1, pp.1019-1024, 2021
- 7) 大脇英司ほか: カーボンリサイクル材料を用いてカーボンネガティブを実現した T-eConcrete®/Carbon-Recycle の開発, セメント・コンクリート, No.900, pp.70-758, 2022.
- 8) 大脇英司ほか: T-eConcrete®/Carbon-Recycle の特徴と社会実装例, 電力土木, No.421, pp.70-74, 2022.
- 9) 荻野正貴ほか: 炭酸カルシウムを利用したカーボン・リサイクルの基本性状について、コンクリート工学年次 論文集, Vol.45, No.1, pp.1090-1095, 2023.
- 10) 宮原茂禎ほか:カーボンリサイクル・コンクリートを用いた根固めブロックの製造,令和5年度土木学会全国大会第78回年次学術講演会,V-587,2023.
- 11) 荻野正貴ほか: リサイクル炭酸カルシウムを添加したコンクリートを用いた二次製品の製造(その1), 令和5年度土木学会全国大会第78回年次学術講演会, V-589, 2023.
- 12) 畑明仁ほか: リサイクル炭酸カルシウムを添加したコンクリートを用いた二次製品の製造(その2), 令和5年度土木学会全国大会第78回年次学術講演会, V-590, 2023.
- 13) 荻野正貴ほか: T-eConcrete®/Carbon-Recycle の適用事例, 大成建設技術センター報, No.56, pp.04-1~04-8, 2023.
- 14) 坂井悦郎ほか:高炉スラグ高含有セメントの水和に及ぼす養生温度の影響,セメント・コンクリート論文集, Vol.70, No.45, pp.119-126, 2016.
- 15) 土木学会: 2022 年制定コンクリート標準示方書, 設計編, 土木学会.
- 16) 土木学会: コンクリート環境負荷評価(その2), コンクリート技術シリーズ62, pp.36-40, 2004.
- 17) R. J. Torrent: A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site, Materials and Structures, Vol.25, pp.358-365, 1992.
- 18) R. Torrent, G. Frenzer: A method for the rapid determination of the coefficient of permeability of the "covercrete", International Symposium Non-Destructive Testing in Civil Engineering(NDT-CE), pp.985-992, 1995.