2次元 LiDAR を用いたバックホウ衝突防止システムの開発

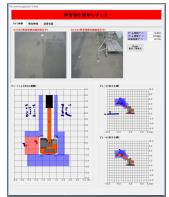
正会員 〇増田 開 鹿島建設(株) 鹿島建設(株) 正会員 末吉 隆信 鹿島建設(株) 正会員 貞末 和宏 鹿島建設(株) 正会員 小野塚 大輔 鹿島建設(株) 岩田 憲彦 鹿島建設(株) 正会員 村社 耕太

1. 目的

都市土木・トンネル・鉄道工事に代表される狭隘な施工環境でのバックホウによる作業は難度が高く、ブーム・アームが上下・旋回動作時に既設の切梁や電線ケーブルなどに接触・衝突し、それらを損傷させる恐れがある。そのため、優れた技能を有する熟練オペレータが作業を担い、さらに誘導員や監視員による危険通知が必要となる場合もあった。しかし、相変わらず、バックホウによる架空線損傷事故や施設損壊事故がなくならないため、オペレータの注意力や誘導・監視員の指示だけに依存せず、さらには経験が浅いオペレータでも安全に作業できるような接触・衝突防止策が求められている。そこで、既設構造物への接触防止および施工時の安全性向上を目的として、2次元 LiDAR センサを用いた衝突防止システム(以下「本システム」)を開発した。本稿は、本システムの概要および検知性能確認試験結果、粉塵による誤検知防止対策、模擬トンネルでの検証結果、実トンネルでの実証試験結果を示すことで、本システムの狭隘な施工環境での既設構造物への接触防止に対する有効性を示すものである。

2. 本システムの概要

本システムは、2次元 LiDAR センサ2台、ブーム・アームの位置検知と機体傾斜検知のための傾斜センサ3台および検知範囲を設定・可変・判定するコンピュータで構成されており、汎用サイズの0.45m³級バックホウに装着した(図-1). これらによってバックホウのブームの起伏やアームの上下動作に合わせて検知範囲が可変し、物体を検知するとバックホウを停止させると同時に、キャビン内のモニターと警告ランプが点灯してオペレータへ知らせることができる. なお、検知範囲は運転席のモニターで設定値を変更することで施工条件に合わせて自由に調整が可能である.



傾斜センサー

2次元LiDARセンサ-

モニター表示

図-1 本システム概要

3. 対象物の違いによる検知性能確認試験

本システムが安定的に稼働し、対象物を確実に検知するかどうか確認試験を行った. **図-2** に示すように 天井から対象物を吊り下げた状態で、バックホウのアームおよびブームを上昇させて、設定値どおりかつ連 キーワード バックホウ、衝突防止、損壊防止、LiDAR、自動停止、

連絡先〒220-0012 神奈川県横浜市みなとみらい 3-3-3 鹿島建設(株)横浜支店土木部 TEL 045-641-8882

続的にシステムが検知し停止するか確認した. 対象物は① 風管 φ300mm, ②塩ビ管 φ100mm, ③単管 φ約50mm, ④単 管+防護, ⑤電線 φ約20mm, ⑥電線+防護の6種類と し,接触前限界の目安として,対象物の30cm下に水糸を 設置した. この水糸に接触しない範囲を検知範囲として設 定し,対象物および水糸への接触の有無を確認した.

ここで、連続 30 回稼働させた場合の水糸と対象物への接触回数を表-1 に示す. いずれも対象物とブーム・アームの接触は見られなかった. 水糸への接触はアームで約 9%(180 回中 17 回)、ブームで約 3% (180 回中 6 回) であり、設定値と実際にブーム・アームが停止する位置には多少のブレがあることがわかった. また、アームはブームに比べて水糸への接触回数が多かったが、アーム検証時はブーム検証時に比べて機体を後方に据える必要があり、LiDAR と対象物までの距離が遠くなったことが影響していると考えられる. さらに、最小径の電線は接触回数が多かったが、防護管の装着で低減できた。以上から、対象物の大きさや表面形状の違い(光の反射しやすさ)による影響があることを考慮して、検知範囲を適切に設定し、対象物に対して適宜反射しやすい処置を実施することで、対象物への接触を防止することができる.

図-2 対象物の違いによる検知性能 確認試験(検知範囲)

表-1 連続30回稼働させた場合の 水糸と対象物への接触回数

一				
	アーム		ブーム	
	水糸	対象物	水糸	対象物
①風管 Ø 300mm	4	0	1	0
②塩ビ管 ϕ 100mm	2	0	1	0
③単管 Ø 約50mm	2	0	2	0
④単管+防護	1	0	2	0
⑤電線 ø 約20mm	8	0	0	0
⑥電線+防護	0	0	0	0

4. LiDAR センサの粉塵による誤検知防止対策

本システムは、トンネル工事における土砂積込み作業や鉄道工事における軌道下の地下掘削作業といった 狭隘な施工環境での適用を想定している。実用化に向けて、次のステップとしてトンネル現場での実証実験を 行う予定であったが、坑内は粉塵環境下であり、LiDAR センサが粉塵に反応することで誤検知して停止する ことが懸念された。そこで、トンネル粉塵濃度基準の上限値 2mg/m³³)の環境下においても本システムが問題 なく機能することを確認するために、室内で人工的に粉塵を発生させて、粉塵濃度が本システムに装着してい る LiDAR センサに及ぼす影響を定量的に確認した。

(1) 粉塵影響確認試験の概要

図-3 に示すように、密閉した仮設ハウス内において、室外に設置した LiDAR センサから約 2m の位置に検知対象物として、電線 ϕ 10mm、塩ビ管 ϕ 50mm、鋼材 L-50mm を取り付けた.石灰(グランド用ライン材:粒径 35 μ m 程度)をブロアにより吹き上げて粉塵を発生させて、LiDAR センサでハウス内の粉塵濃度を連続的に計測するとともに、段階的に粉塵状況をモニタリングした.粉塵計は LiDAR センサから約 1m の位置でセンサ検出範囲の下部に設置した.

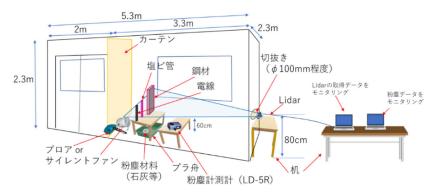


図-3 粉塵影響確認試験の概要

(2) 粉塵影響確認試験の結果

図-4 に仮設ハウス内の粉塵濃度の経時変化を示す.粉塵濃度は,粉塵発生 1 分後で最大値 120mg/m³を示し,徐々に減少傾向となった.粉塵発生 3 分後で約 75mg/m³, 9 分後で約 10mg/m³, 11 分後で約 2 mg/m³, 13 分後で 1 mg/m³以下となった.

次に、**図-5** に専用ソフトによる粉塵発生前の対象物の検知状況(平面図)を示す. ソフトでは、機器により周囲環境の反射を通して現在見られている走査線を青色で表示することができる. この図か

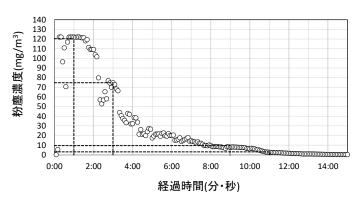


図-4 粉塵濃度の経時変化

ら、対象物(鋼材、電線、塩ビ管)が LiDAR センサから約 2m の位置に検知していることがわかる. このソフトを用いた代表的な粉塵状況をモニタリングした結果を**図-6** に示す. 3 分後(粉塵濃度:約 $75mg/m^3$)では、走査線が約 $0.5\sim1m$ の範囲に表示しており、対象物の手前で粉塵を検知していると推測される. 9 分後(約 $10mg/m^3$)では、走査線が約 $1\sim1.5m$ の範囲に拡大したが、対象物を明確に検知することはできなかった. 11 分後(約 2 mg/m^3)では走査線に凹凸があるものの、おおむね対象物を 2m の位置に検知することができた. しかし、1m 以下の範囲では走査線が残っており、未だ粉塵を検知していると思われる. その後 12 分 30 秒後(約 1 mg/m^3)では、粉塵の影響を受けずに対象物を検知することができた. 以上の結果から、トンネル粉塵濃度基準の上限値 $2mg/m^3$ の濃度では LiDAR センサが粉塵に反応することが懸念された.

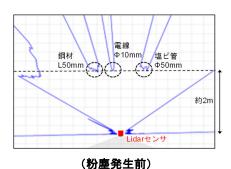
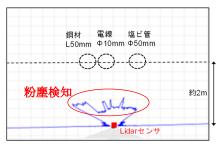
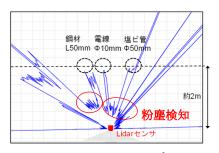
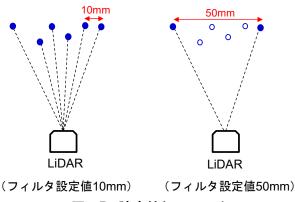




図-5 対象物の検知状況

(3 分後:約 75mg/m³)



(11 分後:約 2 mg/m³)

図-6 代表的な粉塵状況のモニタリング結果(平面図)

(3) 粉塵影響低減対策

粉塵影響確認試験の結果を受けて、LiDAR センサによる粉塵濃度の影響を小さくするための対策について検討した.本システムは、図-7に示すように検知可能な物体の大きさの下限値を設定できる機能(障害検知フィルタ)を搭載している.フィルタ設定値を 50mmとした場合は、10mm とした場合に検知していた0~50mm の範囲の対象物を未検知とすることができる.本システムを用いてフィルタ設定値を 0mm、10mm、50mm、100mm とした場合、前述の実験と同様

図ー7 障害検知フィルタ

に粉塵をモニタリングして、LiDAR センサが粉塵を検知しなくなったときの濃度を各 2 回調べた。**図-8** に LiDAR センサが粉塵を検知しなくなったときの濃度とフィルタ設定値の関係を示す。フィルタ設定値を大きくすることで、粉塵による誤検知を回避できることが確認された。例えば、フィルタ設定値を 40mm 以上にすればトンネル坑内環境基準 $2mg/m^3$ 以下の粉塵を LiDAR センサが検知しなくなるため、粉塵に影響されることなく LiDAR センサを使用できると考えられる。一方、フィルタ設定値以下となる大きさ(径)の対象物

は検知できなくなることが想定されるため、電線など の径の小さいものを対象とする場合は、防護管などを 使用して外径を大きくする工夫が必要であると考えら れる.

5. トンネル現場での実証試験と現場適用

今回対象とする高さ 7m の坑道(以下,トンネル)での仮置きした掘削ずりのバックホウによる積込み作業では,オペレータからトンネル上部を直接確認ができない.そのため,バックホウのブーム・アームがトンネル天端・壁面に接触することを防止するために,実証試験を行い,実作業に適用した.

(1) 検知範囲の設定と検知性能確認

LiDAR センサによる検知範囲は、**図-9** に示すようにトンネル天端・壁面に最も接触する可能性が高いブーム・アームの接続部に限定し、バケットとアームの接続部を結んだラインに対して垂直方向約 0.7m に左右両側に設定した(写真中の赤網掛け部、本体から約 0.5m の離隔を確保). ブーム・アーム接続部の上部に検知対象物を設置し、右側と左側の LiDAR センサに対して、上昇・旋回をそれぞれ連続 30 回×3 セット行い、不具合の有無を確認した. その結果、すべてのケースで不具合が無く、システムの信頼性を確認できた.

(2) 模擬トンネルにおける実証試験

実トンネルにて本システムを搭載した 0.45m³ 級バックホウでの土砂積込み作業の可否を事前に検証するために,仮設防音ハウス内に図-10に示す鋼線とシートを用いて整備した模擬トンネル(高さ 7m)で実証試験を実施した. その結果,設定した検知範囲で問題なく作業が実施でき,かつトンネル天端にアーム上部が近接した際には適切にシステムが作動し,バックホウが自動停止することを確認できた. ここで,トンネル内での土砂積込み作業ではバックホウのバケットがダンプトラックのアオリを越える際にアーム最上部とトンネルの離隔が最も小さくなり,システムが作動することがあった. そのため,効率的に作業を実施するためには,オペレータがあらかじめ検知範囲に入らない作業ルートを事前に確認し学習したうえで作業することが望ましいと考えられる.

(3) 実トンネルにおける現場適用

図-11 に示すとおり、実トンネルにおいて、作業の 基本配置となる右壁側にバックホウを設置し、土砂積 込み作業を行った. なお、土砂に対する粉塵に対して

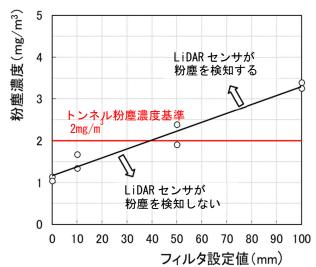


図-8 粉塵が検知しなくなったときの 濃度とフィルタ設定値の関係

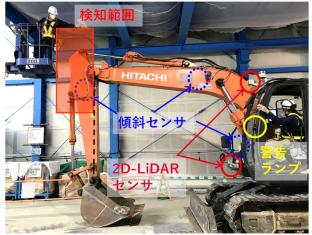


図-9 検知範囲の設定

図-10 模擬トンネルにおける実証試験

図-11 実トンネルでの実証試験

トンネル粉塵濃度基準の上限値 2mg/m³の濃度でも LiDAR センサが粉塵に反応しないように障害検知 フィルタを 50mm に設定した. その結果, 土砂をダ ンプトラックで積み込む際に、アーム上部とトンネ ル天端の離隔は十分あるが、図-12に示すようにト ンネル肩部が左側センサの検知範囲に入り, バック ホウが自動停止する問題が発生し, 作業効率が大き く低下した. そこで、図-13 に示すように右側セン サはトンネル天端 (上方) への接触防止のための検 知を主とし,左側センサは上方の検知領域を縮小し, 旋回時のトンネル壁面への接触防止のための検知を 主とした検知範囲に変更した. その結果, トンネル 壁面近傍の積込み作業でもバックホウが自動停止す ることなく, 円滑に作業できることを確認した. し かし、左右旋回方向が異なる場合に、その都度左右 旋回方向ごとに検知範囲の設定変更が必要となる点 が今後の課題となった.

トンネル内のダンプトラックへの土砂積み込み作業を熟年・若年オペレータによって一定期間実施した. その結果, どちらのオペレータも, 本システムにより図-14 に示すように不具合なくトンネルに接触する前に確実にバックホウが自動停止するため,トンネル天端を一切見ることなく, 運転時の負担を軽減できるとの意見が得られた. 以上により,バックホウがトンネルに接触することなく円滑に施工でき,安全性や品質を確保できることを確認した. その後,3 か月間,現場運用した結果,システムの誤検知や不具合はなく,本システムの小断面トンネル工事のような狭隘部での接触防止に対する有効性を確認できた.

6. まとめ

狭隘な施工環境でのバックホウ作業において、本 システムを活用することで、安全や品質の確保、生 産性を向上するとともに、オペレータの注意力だけ に頼らず、すべてのオペレータの作業支援に寄与す るものと考えられる.

図-12 実トンネルでの実証試験

図-13 検知範囲の変更

図-14 トンネル内での検知・自動停止状況

参考文献:

- 1) 乾ほか: 2 次元 LiDAR を用いたバックホウ衝突防止システムの開発, 土木学会第78回年次学術講演会, 2023.
- 2)田中ほか:2次元 LiDAR を用いたバックホウ衝突防止システムの開発(その2), 土木学会第79回年次学術講演会, 2024.
- 3) 厚生労働省: ずい道等建設工事における粉じん対策に関するガイドライン, 2020.