
株式会社 熊谷組 山口哲司

15CE「仮設構造物の計画と施工 2025年改訂版」講習会

第6章 地下水処理

1. 自由地下水と被圧地下水

2. 透水係数

地盤の透水係数kを求める方法は、

- ① 室内土質試験による方法 (粒度試験結果からの推定、室内透水試験)
- ② 原位置試験による方法 (ボーリング孔を利用した透水試験、揚水試験)

図-21.2 地盤の種類と透水係数の対応

第6章 地下水処理

2. 透水係数

① 室内土質試験による方法 (粒度試験結果からの推定、室内透水試験)

表4.1.1 CreagerによるDaoとkの関係

D_{20} (mm)	k (cm/s)	土質分類
0.005	3.00×10^{-6}	粗粒粘土
0.01	1.05×10^{-5}	細粒シルト
0.02	4.00×10^{-5}	
0.03	8.50×10^{-5}	粗粒シルト
0.04	1.75×10^{-4}	不田本立ンノレト
0.05	2.80×10^{-4}	
0.06	4.60×10^{-4}	
0.07	6. 50×10^{-4}	
0.08	9.00×10^{-4}	極微粒砂
0.09	1.40×10^{-3}	
0.10	1.75×10^{-3}	
0. 12	2.60×10^{-3}	
0. 14	3.80×10^{-3}	微粒砂
0. 16	5.10×10^{-3}	

D_{20} (mm)	k (cm/s)	土質分類
0. 18	6.85×10^{-3}	
0.20	8.90×10^{-3}	微粒砂
0. 25	1.40×10^{-2}	
0.30	2.20×10^{-2}	
0.35	3.20×10^{-2}	
0.40	4.50×10^{-2}	中粒砂
0.45	5.80×10^{-2}	
0.50	7.50×10^{-2}	
0.6	1.10×10^{-1}	
0.7	1.60×10^{-1}	
0.8	2.15×10^{-1}	粗粒砂
0.9	2.80×10^{-1}	
1	3.60×10^{-1}	
2	1.80	細 礫

グラCE 仮設構造物の計画と施工【2025年改訂版】 24

2. 透水係数

② 原位置試験による方法 (ボーリング孔を利用した透水試験、揚水試験)

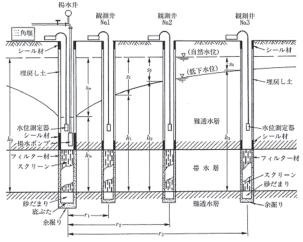


図3.6.2 揚水試験設備の設置例

透水試験で得られた透水係数は、10倍か <u>ら1/10の誤差</u>が生じる場合が多い。

実際の揚水井を利用した 揚水試験を実施

JSCE 仮設構造物の計画と施工【2025年改訂版】 25

第6章 地下水処理

3. 影響半径

井戸などで地下水の揚水を行った場合に、地下水位が影響を受ける範囲 (距離)のことを影響半径(R)と言い、水位低下量、揚水量、揚水時間、透水 係数などに左右される

表6.2.1 揚水井戸の影響圏範囲

土	. 質	影響半径
区分	粒径(mm)	R(m)
粗礫	>10	>1500
礫	2~10	500~1500
粗砂	1~2	400~500
粗砂	0.5~1	200~400
粗砂	0.25~0.5	100~200
細砂	0.10~0.25	50~100
細砂	0.05~0.10	10~50
シルト	0.025~0.05	5 ~ 10

【Sichardtの提案式】

 $R = 3000 \cdot S \cdot \sqrt{k}$

ここに、 S: 水位低下量(m)

k: 透水係数(m/sec)

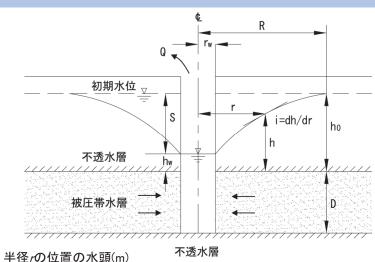
グ5CE 仮設構造物の計画と施工【2025年改訂版】 26

4. 井戸公式

4.1 被圧井戸(定常)

$$h - h_w = \frac{Q}{2\pi kD} \ln \frac{r}{r_w}$$

$$Q = 2\pi k D \frac{h - h_w}{\ln R / r_w}$$


揚水量(m³/sec) Q

D 層厚(m)

影響半径(m)

透水係数(m/sec) 井戸半径(m)

井戸内の水位(m) 井戸からの距離(m)

不透水層

/JSCE 仮設構造物の計画と施工【2025年改訂版】 27

第6章 地下水処理

4. 井戸公式

4.2 自由井戸(定常)

$$h^2 - h_w^2 = \frac{Q}{\pi k} \ln \frac{r}{r_w}$$

$$Q = \pi k \frac{h^2 - h_w^2}{\ln R / r_w}$$

揚水量(m³/sec)

層厚(m) D

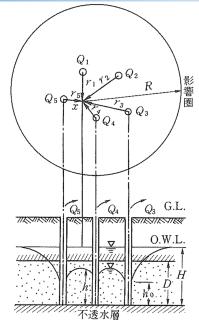
影響半径(m) 半径/の位置の水頭(m)

井戸半径(m) 透水係数(m/sec)

井戸内の水位(m) 井戸からの距離(m)

初期水位 🗸 i=dh/dr ho 自由帯水層 不透水層

/JSCE 仮設構造物の計画と施工【2025年改訂版】 28

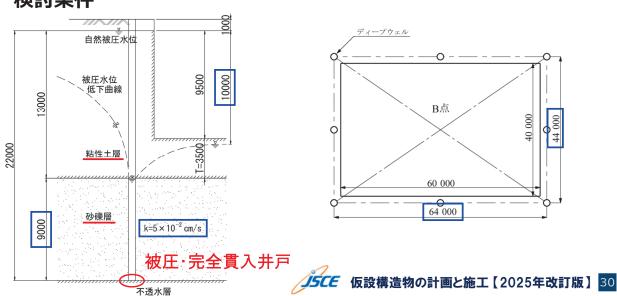

5. 群井戸

5.1 被圧井戸(定常)

$$h_0 - h_p = \frac{1}{2\pi kD} \sum_{i=1}^{n} Q_{wi} \ln \frac{R}{r_i}$$

5.2 自由井戸(定常)

$$h_0^2 - h_p^2 = \frac{1}{\pi k} \sum_{i=1}^n Q_{wi} \ln \frac{R}{r_i}$$



JSCE 仮設構造物の計画と施工【2025年改訂版】 29

第6章 地下水処理

6. 地下水計算例 (DW工法による開削工事)

6.1 検討条件

6. 地下水計算例 (DW工法による開削工事)

6.2 仮想井戸半径の設定

【等価面積半径】

$$r_0 = \sqrt{\frac{64.0 \times 44.0}{\pi}} = 30.0m$$

【等価円周半径】

$$r_0 = \frac{64.0 + 44.0}{\pi} = 34.4m$$

JSCE 仮設構造物の計画と施工【2025年改訂版】 31

第6章 地下水処理

6. 地下水計算例 (DW工法による開削工事)

6.3 影響半径の設定

【Sichardtの提案式】

$$R = 3000 \cdot S \cdot \sqrt{k}$$

= 3000 × 10 × $\sqrt{5.0 \times 10^{-4}}$
= 670m

ここに、 S: 水位低下量(m)

k: 透水係数(m/sec)

表6.2.1 揚水井戸の影響圏範囲

土	質	影響半径
区分	粒径(mm)	R(m)
粗礫	>10	>1500
礫	2 ~ 10	500~1500
粗砂	1~2	400~500
粗砂	0.5~1	200~400
粗砂	0.25~0.5	100~200
細砂	0.10~0.25	50~100
細砂	0.05~0.10	10~50
シルト	0.025~0.05	5 ~ 10

JSCE 仮設構造物の計画と施工【2025年改訂版】 32

6. 地下水計算例 (DW工法による開削工事)

6.4 概略排水量の算出

透水係数 k=5.0×10⁻⁴m/sec、 滞水層厚 D=9.0m、 影響半径 R=670m 仮想井戸半径 r=34.4m、 低下水位 (H-h)=10.0m より

【被圧井戸(定常)】

$$Q = \frac{2\pi k D(H - h)}{\ln(R/r)}$$
$$= \frac{2 \times \pi \times 5 \times 10^{-4} \times 9.0 \times 10.0}{\ln(670/34.4)}$$

 $= 0.0952 \, m^3/sec$

第6章 地下水処理

6. 地下水計算例 (DW工法による開削工事)

6.5 DW1本の可能揚水量

DWは、 $後\phi600$ mm、深さは最深部の不透水層までとし、フィルタ長を9.0mと仮定

【Sichardtの提案式】

$$q = 2\pi r_w h' \cdot \frac{\sqrt{k}}{15}$$
 $(m^3/s \, ec)$ ここに、 r_w : 井戸半径 (m) h' : フィルタ長 (m) k : 透水係数 (m/sec) = $\frac{2 \times \pi \times 0.3 \times 9.0 \times \sqrt{5.0 \times 10^{-4}}}{15}$ = 0.0253 $(m^3/s \, ec)$

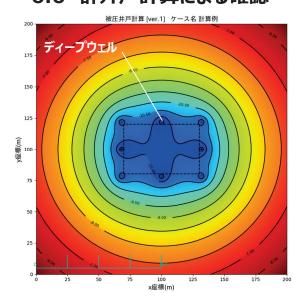
6. 地下水計算例 (DW工法による開削工事)

6.6 DWの必要本数

排水量 : $Q = 0.0952 \, m^3/sec$

DW1本の可能揚水量 : q = 0.0253 $(m^3/s ec)$

Fs=2.0としてDWの必要本数を算出


$$n = F_{\mathcal{S}} \cdot \frac{Q}{q_{\mathcal{W}}} = 2 \cdot \frac{0.0952}{0.0253} = 8 \pm$$

JSCE 仮設構造物の計画と施工【2025年改訂版】 35

第6章 地下水処理

6. 地下水計算例 (DW工法による開削工事)

6.6 群井戸計算による確認

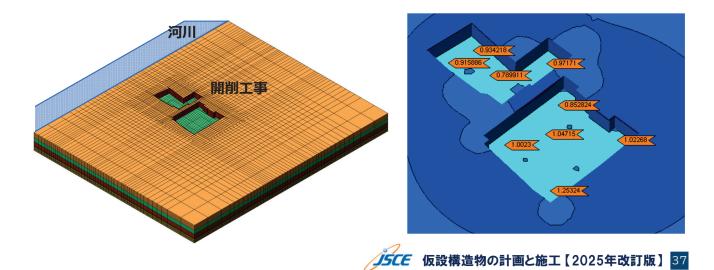
【検討条件】

被圧·完全貫入井戸 透水係数 k=5.0×10-4 m/sec 滞水層厚 D=9.0 m 影響半径 R=670 m 井戸半径 r=0.3 m 揚水量 q=0.71 m³/min/本 $(=0.0952/8\times60)$ 井戸本数 n=8 本

【検討結果】

目標低下水位:10.0m

低下水位:10.5m


グラCE 仮設構造物の計画と施工【2025年改訂版】 36

0 K

- O 64 000

6. 地下水計算例 (DW工法による開削工事)

6.7 FEM (浸透流) 解析の例

