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1. INTRODUCTION 
 
Rockfall movement is uncontrollable and has a 

significant impact on transportation infrastructure 
such as highways and railways, as well as private 
houses. Reports indicate that more than 200 out 
injuries caused by rockfall and slope failures in 2016 
Kumamoto Earthquake, causing severe economic 
losses and loss of life and safety 1). The lateral 
dispersion of rockfall trajectories is a crucial 
indicator for disaster preparedness and prevention. It 
is influenced by numerous complex factors, which 
can be grouped into four categories: the source of the 
rockfall (e.g., location information), the 
characteristics of the rockfall (e.g., material 
properties, shape), the initial conditions (e.g., 
direction), and the characteristics of the slope (e.g., 
material properties, topography, roughness) 2). 
Previous studies have concluded that slope roughness 
significantly affects the randomness of rockfall 
trajectories, as each collision between the rockfall 
and the slope is a randomized process. Researchers 
such as Crosta et al.3) and Nishimura et al.4), by 
introducing a normal distribution to represent 
roughness and considering factors such as the 
average slope angle and rock shape, found that 
roughness increases the lateral dispersion of rockfalls. 
However, the spatial correlation of slope roughness 
has been rarely considered in past studies. For 
instance, slope roughness varies spatially, being 
lower in some areas and higher in others, which 
becomes a causal factor in the random variation of 
rockfall trajectories. 
To reasonably account for slope roughness, a 
probabilistic analysis is conducted to investigate the 
influence of roughness on the lateral dispersion of  

 
Fig. 1 Typical slope model in this study. 

 
rockfall trajectory along the slope. 
 
2. ROCKFALL MODELLING 
 
A rockfall numerical model used in this study is 

depicted in Fig. 1. In this model, a slope angle of 50° 
and a length of 20 m is assumed reflecting typical 
rockfall hazard scenarios in mountainous countries 
such as Japan5). The rockfall simulation involves a 
free-falling phase at a height of 2 m from the slope 
surface. The length from the initial contact location 
to the slope toe is 16 m. According to the past 
database6), the size of rock varies from cmmeters to 
meters while size with the high frequency is in a 
range of 0.4 ~ 0.6 m. In this study, the rockfall is 
modeled as a sphere with a diameter of 0.5 m. 
 
3. DISCRETE ELEMENT METHOD 
 
(1) A summary of DCDEM 
The simulation tool in this study is selected as the 

Distributed Contact Discrete Element Method 
(DCDEM) because of its effectiveness in collision  
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Fig. 2 Contact model in DCDEM. 

 
simulations for solid contact, which has been 
validated in numerous studies7). In DCDEM, particle 
distance is uniform to improve computational 
efficiency8)9). The slope and the rockfall are 
constructed by assembling a group of particles of 
uniform radius, and the relative displacement is 
ensured unchanged to represent a solid. The contacts 
in slope-rock are governed by Newton's second law, 
which combines the forces of each particle in the rock 
or slope to determine the resultant force acting on the 
corresponding object. 
 

𝑀𝑀𝐼𝐼
𝑑𝑑𝑽𝑽𝐼𝐼
𝑑𝑑𝑑𝑑  ∑  𝑘𝑘∈𝐼𝐼 𝑚𝑚𝑘𝑘

𝑑𝑑𝒗𝒗𝑘𝑘
𝑑𝑑𝑑𝑑           (1) 

𝑰𝑰𝐼𝐼
𝑑𝑑𝛀𝛀𝐼𝐼
𝑑𝑑𝑑𝑑  ∑  𝑘𝑘∈𝐼𝐼 𝑚𝑚𝑘𝑘(𝒓𝒓𝑘𝑘 − 𝑹𝑹𝐼𝐼) ×

𝑑𝑑𝒗𝒗𝑘𝑘
𝑑𝑑𝑑𝑑        (2) 

                          
where object I possess a mass 𝑀𝑀𝐼𝐼 , velocity 𝑽𝑽𝐼𝐼 , 
inertial tensor 𝑰𝑰𝐼𝐼, angular velocity 𝛀𝛀𝐼𝐼 and center of 
gravity 𝑹𝑹𝐼𝐼. The vectorial quantities are computed at 
every time step 𝑑𝑑𝑑𝑑.  
The concept of the contact model for rock particles 

and slope particles is illustrated in Fig. 2. The 𝑭𝑭𝑛𝑛,𝑖𝑖𝑖𝑖 
is the normal force and 𝑭𝑭𝑡𝑡,𝑖𝑖𝑖𝑖 is the tangential force 
between two particles from the rockfall and the slope, 
respectively. Each direction is controlled by a spring 
and a damper. In each direction, the force is linearly 
related to the deformation and the damper acts as a 
penalty term to control the energy dissipation caused 
by deformation as follows: 

 

𝑭𝑭𝑛𝑛,𝑖𝑖𝑖𝑖  𝑘𝑘𝑛𝑛.𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛
3
2 ∙ 𝒆𝒆𝑖𝑖𝑖𝑖𝑛𝑛 − 𝛾𝛾𝑛𝑛.𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛

1
4 ∙ 𝑣𝑣𝑛𝑛,𝑖𝑖𝑖𝑖 ∙ 𝒆𝒆𝑖𝑖𝑖𝑖𝑛𝑛   (3)                    

𝑭𝑭𝑡𝑡,𝑖𝑖𝑖𝑖  
2
7 𝑘𝑘𝑛𝑛,𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑡𝑡 ∙ 𝒆𝒆𝑖𝑖𝑖𝑖𝑡𝑡 ∙ 𝑣𝑣𝑡𝑡,𝑖𝑖𝑖𝑖 −
2
7 𝛾𝛾𝑛𝑛,𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑡𝑡 ∙ 𝒆𝒆𝑖𝑖𝑖𝑖𝑡𝑡 ∙
𝑣𝑣𝑡𝑡,𝑖𝑖𝑖𝑖                                   (4a) 

 
where 𝑘𝑘𝑛𝑛.𝑖𝑖𝑖𝑖  is the contact stiffness, 𝛾𝛾𝑛𝑛.𝑖𝑖𝑖𝑖  is the 
damping coefficient, 𝛿𝛿𝑖𝑖𝑖𝑖 is the overlap, 𝑣𝑣𝑛𝑛,𝑖𝑖𝑖𝑖 is the 
normal velocity, and 𝒆𝒆𝑖𝑖𝑖𝑖𝑛𝑛   is the normal vector 
between the two interacting particles i and j from the 
rock and the slope, respectively. A Coulomb-like slip 
model is applied to impose a limit on the magnitude 
of the tangential force, 𝑭𝑭𝑡𝑡,𝑖𝑖𝑖𝑖  and calculated as 
follows: 

|𝑭𝑭𝑡𝑡,𝑖𝑖𝑖𝑖| ≤ 𝜇𝜇𝑓𝑓,𝑖𝑖𝑖𝑖|𝐹𝐹𝑛𝑛,𝑖𝑖𝑖𝑖|tan⁡ 𝜑𝜑      (4b)                               
 

where 𝜑𝜑  corresponds to the normal velocity and 
𝜇𝜇𝑓𝑓,𝑖𝑖𝑖𝑖  is the kinetic friction coefficient between 
rockfall and slope.  

 
Fig. 3 Calculation accuracy due to particle distances 𝑑𝑑𝑝𝑝. 

 
(2) Accuracy of particle distance 
Particle distance (𝑑𝑑𝑝𝑝) and overlap ratio (OR) are 

two parameters affecting shape representation in 
DCDEM. Smaller 𝑑𝑑𝑝𝑝 and larger OR leads to more 
accurate calculation results, however, the number of 
particles will be increased greatly with lower 
computational efficiency. In this study, the OR is 
fixed at 1 based on the previous literature10), meaning 
no initial overlap between initial particles. As shown 
in Fig. 3, 𝑑𝑑𝑝𝑝 is adjusted from 0.02 m to 0.10 m to 
check the variation of calculation results. A 
comparison of the velocity and jump height at the 
slope toe reveals that calculation results are stable 
until 𝑑𝑑𝑝𝑝 ≤  .  ⁡m , while results fluctuate 
considerably when 𝑑𝑑𝑝𝑝 >  .  ⁡m . Referred to this, 
this study sets the particle distance 𝑑𝑑𝑝𝑝 to 0.05 m. 
 
4. REPRESENTATION OF ROUGHNESS 
 
The random field theory is used to represent the 

spatial variability11) for a surface roughness r(x, y, z   
0) which is represented as the sum of the trend 
component (mean) and the random component 
(deviation from the mean): 

 
𝒓𝒓(𝑥𝑥, 𝑦𝑦)  𝒕𝒕(𝑥𝑥, 𝑦𝑦) + 𝝐𝝐(𝑥𝑥, 𝑦𝑦)      (5)   

 
where 𝒓𝒓(𝑥𝑥, 𝑦𝑦)  is the value at coordinate (𝑥𝑥, 𝑦𝑦) , 
t(𝑥𝑥, 𝑦𝑦) is the value of the trend component at (𝑥𝑥, 𝑦𝑦), 
which is a deterministic value, and ϵ(x,y) is the 
random component at (𝑥𝑥, 𝑦𝑦)  which is the static 
random field vector. In order to consider the 
correlation spatially, an exponential autocorrelation 
function is used: 
 

𝜌𝜌(𝑖𝑖𝑖𝑖)  𝑒𝑒𝑒𝑒𝑒𝑒⁡(− 2|∆𝑖𝑖|
𝜃𝜃𝑖𝑖

− 2|∆𝑗𝑗|
𝜃𝜃j

)        (6) 
 

where ∆𝑖𝑖  and ∆𝑗𝑗  refer to the lag distance in row 
and column in a matrix, respectively, with their 
corresponding autocorrelation length 𝜃𝜃𝑖𝑖  and 𝜃𝜃𝑗𝑗 . 
Larger autocorrelation lengths signify correlations 
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𝛿𝛿𝑛𝑛

𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛i j i j

0.02 0.03 0.04 0.05 0.07 0.10
8

10

12

14

16

0.0

0.5

1.0

1.5

2.0

2.5
 Velocity
 Jumping height

Ju
m

pi
ng

 h
ei

gh
t a

t s
lo

pe
 to

e 
(m

)

V
el

oc
ity

 a
t s

lo
pe

 to
e 

(m
/s

)

dp (m)

― 26 ―



 

 

over extended lengths. 𝛺𝛺  consists of a matrix of 
autocorrelation coefficients 𝜌𝜌 at different locations 
 

𝛺𝛺  [
1
𝜌𝜌12
⋮

𝜌𝜌1𝑛𝑛

𝜌𝜌12
1
⋮

𝜌𝜌2𝑛𝑛

⋯ 𝜌𝜌1𝑛𝑛
⋯ 𝜌𝜌2𝑛𝑛
⋱ ⋮
⋯ 1

]         (7)  

                                                                         
where n is the number of the random numbers. Then, 
Cholesky decomposition for Ω is conducted to obtain 
the transpose matrix 𝑆𝑆𝑇𝑇 with its own matrix 𝑆𝑆.  

 
𝛺𝛺  𝑆𝑆𝑇𝑇𝑆𝑆             (8) 

 
To write the correlation matrix into a random field, 

multiply by a distribution such as normal distribution. 
 

𝝐𝝐  𝑆𝑆𝑇𝑇𝑅𝑅             (9)                                    
 

where R is the random number from the prescribed 
distribution. Finally, the creation of a random field 𝝐𝝐 
considering spatial correlation length is completed.  
 
(1) Intensity 

In this study, a location is investigated to provide 
the reference of parameter design for slope roughness. 
The investigated location is shown in Fig. 4. The 
result shows that a normal distribution is well fitted  

 

 
Fig. 4 Investigated location for slope roughness. 

 

 
Fig. 5 Statistic results from the investigated location. 

and that standard deviation 𝜎𝜎  is 0.4 m, 𝜃𝜃s_h  is 
around 10 m and 𝜃𝜃s_l is around 5 m as shown in Fig. 
5. This study explores the effects of parameter 
variations based on this results. Fig. 5 illustrates the 
roughness distribution with a standard deviation 𝜎𝜎 
of 0.4 m on a surface measuring 60 m horizontally  
and 20 m longitudinally. Red regions represent 
bumps and blue regions represent depressions, with a 
grid resolution of 1 m. 
 
(2) Spatial correlation 

The distribution of roughness in Fig. 6 is random 
without consideration of spatial correlation. By 
assuming an autocorrelation length in the horizontal 
direction 𝜃𝜃s_h  1 ⁡m  and in the longitudinal 
direction 𝜃𝜃s_l   ⁡m  with a standard deviation 𝜎𝜎 
of 0.4 m, the roughness generation with the 
consideration of spatial correlation is achieved as 
shown in Fig. 7. 

It is worth noting that the random field (Fig.8 (a)) 
is discrete with 1-m resolution, and a continuous 
surface (Fig. 8 (b)) is transformed using spline 
algorithm10) fitted to the discrete random field, which 
is then rotated by 50° to match the slope surface in 
the rockfall numerical modeling as shown in Fig. 8 
(c). Fig. 8 (d) is the slope numerical modeling with 
roughness and is subsequently imported into 
DualSPHysics software for DCDEM calculation with 
its corresponding visualization as shown in Fig. 8 (e). 

In this study, standard deviation 𝜎𝜎 is varied in a 
range of 0 m ~ 1.0 m, autocorrelation length in the 
horizontal direction 𝜃𝜃s_h  of 5 m ~ 15 m and 
autocorrelation length in the longitudinal direction 
𝜃𝜃s_l of 2 m ~ 8 m. For each parameter, 100 slopes are 

 

 
Fig. 6 A random field with 𝜎𝜎   .4 m while without 𝜃𝜃s_l and 
𝜃𝜃s_h. 
 

 
Fig. 7 A random field with 𝜎𝜎   .4⁡m  while 𝜃𝜃s_l   ⁡m  and 
𝜃𝜃s_h  1 ⁡m. 
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Fig. 8 Sketch of roughness generation for slope numerical 
modeling. 
 
generated based on the Monte Carlo Simulation 
(MCS). All input parameters are listed in Table 1. 
 
5.PROBABILISTIC EVAUATION 
 
In order to evaluate rockfall trajectory 

probabilistically, a reach probability map of rockfall 
is calculated. The space is divided into a 1-m grid and 
count the number of passing rockfalls for each grid. 
The reach reach probability for each grid is as 
follows: 

 
𝑃𝑃𝑖𝑖𝑖𝑖  𝑁𝑁𝑖𝑖𝑖𝑖

𝑛𝑛                (10) 

 
Fig. 9 The relationship between MAE and the of number of 
MCS with 𝜎𝜎   .2⁡~1. ⁡m at fixing 𝜃𝜃s_l   ⁡m and 𝜃𝜃s_h  
1 ⁡m. 
 

 
Fig. 10 The relationship between MAE and the of number of 
MCS with 𝜃𝜃s_l  2⁡~⁡8⁡m and 𝜃𝜃s_h   ⁡~⁡1 ⁡m at fixing 
𝜎𝜎   .4⁡m. 
 
where 𝑃𝑃𝑖𝑖𝑖𝑖 is the reach reach probability for grid ij 
with n MCS, i is the row number, j is the column 
number, and 𝑁𝑁𝑖𝑖 is the counted rock number in grid 
ij with n MCS. Fig. 9 is given as an example. It is 
worth noting that the colormap range has been 
adjusted to 0 ~ 0.3 for clear viewing, with red color 
representing high reach probability and blue color 
representing low reach probability.  
 
(1) Number of simulations 
In order to explore the changes in the reach reach 

probability with MCS, the mean absolute error, 
MAE12), is calculated as: 
 

MAE  ∑ ∑ |𝑃𝑃𝑖𝑖𝑖𝑖,𝑛𝑛−𝑃𝑃𝑖𝑖𝑖𝑖,𝑛𝑛−1|𝑗𝑗𝑖𝑖
𝑚𝑚        (11) 

 
where 𝑃𝑃𝑖𝑖𝑖𝑖,𝑛𝑛 is the reach reach probability in grid ij 
with n MCS, 𝑃𝑃𝑖𝑖𝑖𝑖,𝑛𝑛−1 is the reach reach probability 
in grid ij with n-1 MCS, and m is the total number of 
grids of reached rockfall, which reflects the affected 
area by rockfall. The relationship between MAE and 
the number of MCS for a given 𝜎𝜎  is illustrated in 
Fig. 9. It is observed that when the number of  

Table 1 Input parameters for slope roughness.

Number of MCS alueParameter

100

0 ~ 1.0 m (m)
2 ~ 8 m  _ (m)

5 ~ 15 m  _ (m)
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Fig. 11 Reach reach probability under the slope roughness with 
𝜎𝜎   .4⁡m, 𝜃𝜃s_l   ⁡m and 𝜃𝜃s_h  1 ⁡m. 
 
simulations reaches 100, MAE all approaches 0.001 
MAE, indicating the reach probability map obtained 
through 100 simulations is probabilistically reliable 
within the 0.001 MAE. Similar numerical findings 
can be observed in Fig. 10 for autocorrelation length 
variations. Therefore, 100 simulations can ensure the 
stability of the reach probability map within 0.001 
MAE considering the slope roughness. 
 
(2) Dispersion angle 
As shown in Fig. 11, the initial release location of 

the rockfall (x   3 m, y   0 m), along with the two 
farthest locations it reaches laterally (along the y-
axis), form the dispersion angle, denoted by 𝛼𝛼 , 
which is used as an index to represent the lateral 
dispersion for rockfall movement. Fig 12 shows 
changes in 𝛼𝛼 under intensity variation of 𝜎𝜎, while 
Fig. 13 and Fig. 14 show changes under 𝛼𝛼  in the 
variation of horizontal autocorrelation length 𝜃𝜃s_h 
and longitudinal autocorrelation length 𝜃𝜃s_l. 
In Fig. 12, when 𝜎𝜎  is 0, representing the slope 

without any roughness, there is no dispersion angle. 
With increasing the 𝜎𝜎 , the roughness promotes the 
lateral dispersion of the rockfall trajectory. When 𝜎𝜎 
is 0.2 m, the 𝛼𝛼 is 48°. The 𝛼𝛼 increases to 52° at 𝜎𝜎 
  0.4 m. Beyond this, the 𝛼𝛼 fluctuates between 64° 
and 79° with increasing 𝜎𝜎 from 0.6 m to 1.0 m. It is 
indicated that the 𝜎𝜎 is positively correlated with the 
𝛼𝛼 and there is a maximum 𝛼𝛼 around 75°. 
In Fig. 13, with increasing the 𝜃𝜃s_h, 𝛼𝛼 shows an 

decreasing trend. When 𝜃𝜃s_h   5 m, 𝛼𝛼 is 59°  when 
𝜃𝜃s_h   10 m, 𝛼𝛼 is 52°  when 𝜃𝜃s_h   10 m, 𝛼𝛼 is 45°. 
In Fig. 14, with increasing the 𝜃𝜃s_l, 𝛼𝛼 shows an 

decreasing trend. When 𝜃𝜃s_l   2 m, 𝛼𝛼 is 65°  when 
𝜃𝜃s_l   10 m, 𝛼𝛼 is 52°  when 𝜃𝜃s_l   10 m, 𝛼𝛼 is 51°. 
Fig. 15 shows the all result of the dispersion angle 

under parameter variation for slope roughness. The 
variation of 𝜎𝜎 shows a significant influence on the 
dispersion angle than other two parameters 𝜃𝜃s_h and 
𝜃𝜃s_l because the dispersion angle ranges in the  

 
Fig. 12 Dispersion angle 𝛼𝛼  with 𝜎𝜎   ⁡~⁡1. ⁡m  while fixing 
𝜃𝜃s_l   ⁡m and 𝜃𝜃s_h  1 ⁡m. 
 

 
Fig. 13 Dispersion angle 𝛼𝛼  with 𝜃𝜃s_l  2⁡~⁡8⁡m  while fixing 
𝜃𝜃s_h  1 ⁡m⁡and⁡𝜎𝜎   .4⁡m. 
 

 
Fig. 14 Dispersion angle 𝛼𝛼 with 𝜃𝜃s_h   ⁡~⁡1 ⁡m while fixing 
𝜃𝜃s_l   ⁡m⁡and⁡𝜎𝜎   .4⁡m. 
 

 
Fig. 15 Results of dispersion angle 𝛼𝛼  with 𝜎𝜎   ⁡~⁡1⁡𝑚𝑚 , 
𝜃𝜃s_h   ⁡~⁡1 ⁡m and 𝜃𝜃s_l  2⁡~⁡8⁡m. 
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largest variation of 0 ~ 79° while in the variation of 
45 ~ 70° under variation of 𝜃𝜃s_h and 𝜃𝜃s_l. 

 
6. CONCLUSIONS 
 
The slope roughness is represented using the 

random field theory, controlled by 3 parameters for 
intensity and spatial correlation: standard deviation 
𝜎𝜎 for intensity, longitudinal autocorrelation length of 
𝜃𝜃s_l  and horizontal autocorrelation length 𝜃𝜃s_h  for 
spatial correlation. With the help of the numerical 
tool of the Distributed Contact Discrete Element 
Method (DCDEM), the reach probability map of the 
rockfall trajectory is calculated and the dispersion  
angle is statistic . The main findings are as follows: 
 
(1) Considering the trajectory variation due to slope 

roughness, 100 simulation can obtain a reach 
probability within 0.001 of MAE. 

(2) The intensity of slope roughness 𝜎𝜎 promotes the 
lateral dispersion of rockfall trajectory. The 
dispersion angle is varied from 0° to 79° with 𝜎𝜎 
increasing from 0 m to 1.0 m.  

(3) As increasing of 𝜃𝜃s_l from 2 ~ 8 m and and 𝜃𝜃s_h 
from 5 ~ 15 m, the dispersion angle varies from 
45° ~ 70°. 

(4) Compraed to 𝜃𝜃s_l  and 𝜃𝜃s_h , 𝜎𝜎  has more 
significant influence on the dispersion angle than 
spatial correlation.  

(5) When 𝜎𝜎  exceeds the 0.4 m, dispersion angle 
shows a stable trend around 75°.  

 
Except slope roughness, the effect of the rock 

shape on the trajectory variation is also significant. In 
this study, the rock is simulated as a sphere to 
eliminate the rock shape effect with its initial angle. 
In the subsequent study, the rock shape effect with its 
initial angle will be considered. 
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