斜面崩壊における粒状体個別要素法の

実業務への適用検討

STUDY OF APPLICATION OF GRANULAR DISTINC ELEMENT METHOD IN SIMULATION OF SLOPE FAILURE

中川 光雄¹ Mitsuo NAKAGAWA

¹株式会社 地層科学研究所(〒532-0011 大阪市淀川区西中島5丁目7-19) E-mail: nakagawa@geolab.co.jp

Key Words: slope failure, granular distinct element method, laboratory test, contact model, coordination number

1. はじめに

土砂災害が発生した場合の土砂の運動特性や到達範囲 を予測し対策を計画することは、人命の危険を回避し交 通基盤の安全性を確保する上で重要である.これらを力 学的に予測する方法の1つに数値シミュレーションがあ る.一口に土砂災害と言ってもその発生形態は多岐に渡 り、土塊がほぼ原形を留めて運動し移動速度が緩慢な地 すべりに対しては、大変形連続体解析の適用事例^{例えばむ} が見受けられる.一方で、個別の岩塊が原型を留めて崩 落する落石や岩盤崩壊に対しては、ブロック体個別要素 法解析の適用事例^{例えばむ}が見受けられる.斜面崩壊は、 地層や表土が滑落してほぼを原型を留めない状態となる ことを指す場合が多く、道路土工³では大規模崩壊と表 層崩壊に分類されている.著者は表層崩壊を対象とした 粒状体個別要素法の適用を過去に発表⁴している.

これまでにも斜面崩壊を対象とした数値シミュレーシ ョンに粒状体個別要素法が適用された事例は幾つか見受 けられる.村上ら[®]は、新潟県中越地震での被災斜面を 対象として、流れ盤斜面では大規模崩壊、受け盤斜面で は表層崩壊が得られるシミュレーションを実施している. 今田ら[®]は、2016年熊本地震での被災斜面を対象として、 シミュレーションで得られた土塊形状の変化や流速から、 事前に仮定した土塊のせん断強度(粘着力、摩擦係数) の妥当性を考察している.森口ら[®]は、土砂流動実験の 再現解析を通して、粒子形状や粒子間接触パラメータの 変化を試行の対象として土砂流動の相違を考察している. 粒状体個別要素法では、堆積土砂を粒子集合体と考えて、 微視的な粒子個々の相互作用を解くことによってその巨 視的な崩壊土砂の運動挙動を再現しようとするものであ る.因って、崩壊後に移動する土砂が原形を留めず、複 数に分岐することもある状況を考えると、挙動を構成則 で制御する連続体解析の適用に比べて、このような解析 手法の適用には優位性があると思われる.

さて、先に示した報告例は原地盤が対象だが、微視的 情報、すなわち、粒子自体の属性や接触パラメータの感 度分析などに主眼が置かれおり、パラメータから議論が スタートして試行検討の対象となっている.しかしなが ら、原地盤がどのような地盤物性(変形係数、ポアソン 比、質量密度、間隙率、粘着力、内部摩擦角、など)を 有するのか、それに対してどのような粒子間接触モデル を適用し、どのようにパラメータを決定したのか、につ いては明瞭に示されていない.他の既往検討も同様の傾 向を示す現状から、現場を対象とする実業務で粒状体個 別要素法を適用することは困難だと推測される.

一般に、対策工設計などの実業務においては、室内試 験実施の有無に関わらず、上述した地盤物性は調査設計 の段階で用意されることが多い.因って、粒状体個別要 素法を少しでも設計業務等で利用するには、原地盤の地 盤物性から粒子間接触モデルのパラメータを合理的、か つ. 比較的簡易に決定できるシステムの構築が必要であ る. そこで本報では、室内試験の供試体が原位置から採 取されることを前提として, 粒状体個別要素法による室 内試験シミュレーションを事前に実施して崩壊対象とな る地層や表土の粘着力や内部摩擦角を表現する粒子間接 触パラメータを求め、これを斜面崩壊シミュレーション の解析モデルに適用する方法を取る. さらに、前者の粒 子集合体の粒子構造と配置が後者のそれと同等となるよ う後者の解析モデルを構築する.本報では、これら2つ を必須項目として実施すれば、斜面崩壊シミュレーショ ンに対して原位置地盤の力学特性が反映されると考える. 次章以降では、まず、粒状体個別要素法の基本概念と

粒子間接触モデルの概要を述べる.次に,斜面崩壊のう ちの表層崩壊を対象として,地質の異なる崩壊土砂(粘 性優位,砂質優位)に対して前述の必須項目を実施し, 2次元シミュレーションの結果より得られた運動特性の 相違を整理した.最後に,崩壊土砂の斜面横断方向への 広がりを表現できる3次元表層崩壊シミュレーションの 事例を示す.解析プログラムはPFC ver 6(米国, Itasca 社製)を用いた.

2. 粒状体個別要素法と粒子間接触モデル

(1) 粒状体個別要素法の概要

粒状体個別要素法とは、剛体円盤(2次元)や剛体球 (3次元)を粒子要素として、対象材料をこれらの集合 体でモデル化し、ミクロな粒子要素間の力学挙動を解く ことによりマクロな集合体全体の挙動を得る数値シミュ レーションである.ここで粒子要素は図-1(a)に示すよ うに土粒子1つを表すのではなく、ある程度の大きさの 塊を表すものと考える.粒子要素は並進および回転の運 動方程式を差分法で解くことにより時々刻々と移動し、 大変形から崩壊やそれに伴う土砂移動の過程を追跡する ことができる.2つの粒子要素が図-1(b)のように接触 したと判定された時には、粒子要素円周上の接触点の位 置に図-2に示すような粒子間接触モデルが自動的に発生 する.2つの粒子要素が離反して非接触となれば、接触 モデルは自動的に消失する.他の高度な接触モデルにお いてもこれらは基本構成要素として用いられる.

(2) 粒子間接触モデル

a)バネ剛性分布

地盤の変形特性として一般に、変形係数Eとポアソン 比vが与えられる.しかしながら、粒状体個別要素法に おける変形特性は接触点において面積の概念が無い垂直 バネとせん断バネで表現される.そこで本報では、図-1(b)に示すように、接触面積A=2rt (r=min(R⁽¹⁾,R²⁾)(=1))を 定義して、軸方向剛性AE/Lを垂直バネ剛性k,せん断バ ネ剛性k=k/vと定義して、変形係数Eとポアソン比vか ら粒子間パラメータであるk,kを評価する.粒径が分布 する粒子集合体においてk,kそれぞれに単一の数値を与 える既往の方法とは異なり、本報では粒径に応じた垂直 バネ剛性とせん断バネ剛性を分布させることができる.

b)固着強度

堆積土砂の粘着力を表現するには粒子間に固着を導入 する必要がある.粘着力を有する土砂や地盤に対する粒 子間接触モデルとして,従来からParallel Bondモデル[®]が 用いられてきた.このモデルは,粒子間の仮想接触面で 応力とモーメントを伝達するため,接触面に粒子間せん

図-2 線形接触モデル(赤線と緑線は図-1(b)に対応)

図-3 Soft-Bond 接触モデル(赤線と緑線は図-1(b)に対応)

図-4 Soft-Bond 接触モデルの垂直応力-相対垂直変位関係

断強度と粒子間引張強度を与えると、粒子集合体、すな わち、堆積土砂のせん断強度(c, ϕ)が表現できる.た だし、このモデルは粒子間の接触応力が強度に到達した 時点で即時に強度を消失する脆性的な特性を有する.そ こで本報では、強度超過後も強度低下を表現できるよう にParallel Bondモデルを拡張した図-3に示すSoft-Bond接触 モデル[®]を適用する.このモデルは、図-4に示すように、 粒子間垂直応力が引張の状態にある時、接触引張強度 (σ_c^{a})超過後の強度低下の程度は、破壊強度($\sigma_c^{a}\gamma$; γ は破壊強度係数)と強度低下勾配(k_n/ξ ; ξ は強度低下 勾配係数)によって決定され、破壊強度($\sigma_c^{a}\gamma$)に到達 した時点で固着は消失する.ここで、破壊強度係数(γ) と強度低下勾配係数(ξ)のそれぞれを変動させた場合の

(a) 図-5 主要パラメータ(*ξ*, *γ*)の相違による強度低下の相違(接触力:引張は負で表示)

γの相違(*ξ*=2の場合) (b)

接触力と相対変位の事例を図-5に示す. これより2つの パラメータの組み合わせにより、強度低下の相違をモデ ル化できることが分かる.ちなみに、 εに0、 γに1を与 えた場合は、Parallel Bond接触モデルに該当する.

3. 表層崩壊シミュレーション

佐々木10は、国内における土砂災害の中で少なからず 発生する表層崩壊の定義について、「表層部が原型をと どめず崩落するものをいう. 一般に急傾斜地によくみら れ,その崩落速度は速い. 強風化岩,崩積土に多く,豪 雨等によって引き起こされることが多い. | と述べてい る. 堆積の幅や長さが数十m~数百mと広範囲な割には土 層深が数十cm~数百cm程度と極めて薄く、上述した崩落 時の運動特性から、これを連続体でモデル化することは 極めて困難であると思われる. そこで本報では、粒状体 個別要素法を適用し、シミュレーションの結果より堆積 土砂が有する粘性(固着)の相違が崩落時の運動特性に 及ぼす影響を整理した.

(1) 対象斜面の概要と検討ケース

対象斜面を図-6に示す.崩壊土砂の土層深は最大 80(cm),長さ27.6(m)に渡る.堆積の下端より15(m)下に は供用中の自動車道が存在し、土砂が30(m)下に移動す れば路面に到達する状況にある. 崩壊土砂は原位置調査 により表-1に示した物性値が得られており、シルト質な 砂礫(未固結)である.本報では、粘性優位と摩擦性優 位の場合の崩壊挙動を比較検討するために,変形特性を

一定とした上で、粘着力と摩擦角が異なる表-2に示した 全3ケースを実施した.

(2) 二軸圧縮試験シミュレーション

表-2に示した各ケースにおいてSoft-Bond接触モデルの パラメータを決定するために、図-7に示す二軸圧縮試験 シミュレーションを実施した.ここで、土層深80(cm)に 対して粒子要素が深さ方向に15個~20個程度を配置でき れば崩壊土砂の移動が良好に表現できると考えて平均粒 径を5(cm)とした.また、間隙率15(%)を実現できる最小 粒径に対する最大粒径の比は2.0(最小粒径3.3(cm)~最 大粒径6.7(cm))として、粒子要素の重心位置と粒径を乱 数で分布させた.各ケースに対して得られたSoft-Bond接 触モデルのパラメータを表-3に示す.

(3) 崩壊土砂のモデル化

a)供試体モデルと崩壊土砂モデルの力学的等価性

図-7に示した供試体領域における粒子集合体と図-6に 示した斜面に与える堆積土砂の粒子集合体は、力学特性 に等価であることが望まれる.このために、表-3に示し たパラメータを堆積土砂の粒子集合体に適用する.さら に、粒径分布や間隙率に基づく粒子の構造・配置を両者 間で同等とするため、これらを表す指標である配位数 (1つの粒子あたりの接触点数)¹¹¹に着目し、供試体と 堆積土砂の平均配位数が同等となるよう堆積土砂をモデ ル化する.ここで、供試体の平均配位数は、4.1である.

b)表層崩壊シミュレーションの解析モデル

表層崩壊シミュレーションの粒状体個別要素法による 解析モデルを図-8に示す.作成要領は、まず、図-7に示 した供試体領域の粒子集合体を図-6の赤ラインと青ライ ンで囲まれた堆積領域にコピーする.次に、重力加速度 を載荷して静的平衡状態を得る.これを崩落前の初期状 態とする. 平均配位数は4.2となり、重力加速度を載荷 したことにより粒子配置が若干変化したものと思われる. しかしながら、変動が2%程度と微小であるため、粒子構 造における等価性はほぼ実現されていると考える.尚, 崩壊土砂の移動では、強度消失により離反して再接触し た粒子要素の固着は再度有効化させた.

(4) 表層崩壊シミュレーションの結果

a) 崩壊土砂の運動特性

シミュレーションは、時間増分ムt=6.831e-5(秒)を繰 り返すことにより時間の経過を表現する.表-3に示し た検討ケースにおいて崩壊土砂が移動する 10 秒までの 過程を図-9 に示す. 堆積長さに対して層厚が薄いため ケースごとの相違を検出するのは容易ではないが、2秒 から6秒あたりまでの崩壊挙動に着目すると、ケース2 はケース1と比較して土砂の堆積膨張や粒子の飛散が大 きく、 粒子間の固着の程度の相違が運動特性に反映され ているものと思われる.また、4秒あたりの挙動に着目 すると、3つのケースの中ではケース3が最も原型から の崩れが少ないことから、摩擦角が他ケースの中間の大 きさであっても軟岩としての粘着力、すなわち、粒子間 固着の効果が反映された結果であることが伺える.下方 へ移動する際は、斜面の凹凸に繰り返し衝突するため、 どのケースも8秒以降は原型を留めなくなる傾向にある.

b)崩壊土砂の変位と速度の時刻歴

崩壊土砂の経過時間に伴う合成変位の進展状況を図ー 10に示す. 図中に示した堆積上部の1粒子要素(上部点) と堆積下部の1粒子要素(下部点)を対象として,各ケ ースを比較した.3秒までは全てのケースにおいて上部 点と下部点の変位増加は同程度であるが、3秒以降は異 なった傾向が見られる.ケース1とケース2は、下部点 に比べて上部点の変位が大きい. これは、上部土砂が最 終的には下部土砂に接近したことを示す. ケース3は上 部点と下部点の進展が同程度である.これは、上部土砂 と下部土砂がほぼ同じ速度で運動したことを示す. これ らのことは、速度の進展状況を示す図-11からも確認で きる. すなわち, ケース1とケース2は, 3秒以降, 下 部点に比べて上部点の速度が大きい. これに対して、ケ ース3は上部点と下部点が同程度の速度を示している。 これより、他のケースよりも粘着力の大きい軟岩は比較 的原型を留めて移動したことが伺える.

c) 道路への堆積土量

道路面に堆積した土量の経時変化を図-12に示す.こ れより、ケース1とケース2においてはあまり差は見ら れない. ケース3の堆積の進展は他のケースよりも時間 的に遅れが見られる.これは、粘着力の効果によるもの と思われる.

4. 3次元表層崩壊シミュレーション

交通基盤等を対象とした対策工設計の視点に立つと, 前章で示した2次元シミュレーションでは, 崩壊土砂が 斜面横断方向にどの程度の広がりをもって保全対象に到 達するかを予測することはできない.本章では、表層崩 壊シミュレーションを3次元で実施した事例を示す.

(1) 現場と解析モデルの概要

対象斜面の解析モデルを図-13に示す.崩壊土砂の土 層深は最大270(cm)である. 堆積の下端より50(m)下には 供用中の自動車道が存在し、土砂が90(m)移動すれば路 面に到達する状況にある. 原位置の調査から得られた崩 壊土砂の物性値を表-4に示す.図-14に示す三軸圧縮試 験シミュレーションでは、平均粒径10(cm)、最小粒径に

図-15 表層崩壊の過程(3次元シミュレーション)

対する最大粒径の比は2.0とした. これより得られた Soft-Bond接触モデルのパラメータを表-5に示す. 図-14 に示した供試体領域の平均配位数は10.2, 図-13に示し た崩落前の堆積土砂の平均配位数は9.7である. ここで も,その変動が5%程度と微小であるため,粒子構造にお ける等価性はほぼ実現されていると考える. また,強度 消失により離反し再接触した粒子要素の固着は再度有効 化させた.

(2) 表層崩壊シミュレーションの結果

堆積土砂が道路に到達する16秒までの過程を図-15に 示す.7秒程度までは先端部の乱れを除き土砂は全体と して固結を維持した状態で移動している.12秒以降は斜 面の凹凸による地形の影響を繰り返し受けて土砂周辺部 より粒子要素の多くは強度消失により離反し,二股に分 岐して移動する結果が得られた.これより,道路では約 100(m)に渡る区間が対策工の対象になると思われる.

4. おわりに

本報告は、斜面崩壊による土砂の運動特性や到達範囲 を粒状体個別要素法を用いて予測する際、原位置試験や 調査から一般的に得られる地盤物性に基づいて粒子間接 触モデルのパラメータ、および、粒子構造の配置を合理 的に決定する一連のシステムを示した. 今後は、実際の 被災現場に適用し、本提案の妥当性を検証する.

参考文献

1) 中川光雄・山田正雄:有限差分法・大変位解析による地

すべりシミュレーションの適用性,地すべり,第44巻, 第6号, pp337-384,2008.

- 2) 中川 光雄,山田 正雄,中谷紀行,近重朋晃:合理的な接触判定法に基づく3次元個別要素法による落石・岩盤崩落 シミュレーション,地すべり学会誌, Vol.47, No.3, pp.147-154,2010.
- 道路土工 のり面・斜面安定工指針, (社)日本道路協 会, 1999.
- 中川光雄,池田泰之,山 真典,谷口拓也:斜面表層崩 壊の土砂到達予測における粒状体個別要素法解析の適用, 土木学会第69回年次学術講演会, pp.555-556,2014.
- 村上貴志,村上 章: DEM による地質構造の斜面崩 壊形態への影響検討,第 41 回地盤工学研究発表会講演 集,pp.2105-2106,2009.
- 今田耕太郎,赤木寛一,齋藤 亮,桐山貴俊:DEM を用いた熊本地震による南阿蘇村立野地区の斜面崩 壊解析,土木学会第73回年次学術講演会,pp.589-590, 2018.
- 森口ら:個別要素法による土砂流動解析の計算条件 に関する一考察,土木学会第71回年次学術講演会, pp.127-128,2016.
- D. O. Potyondy and P. A. Cundall, 'A bonded-particle model for rock' *International Journal of Rock Mechanics and Mining Sciences, Vol.41*, pp1329-1364(2004).
- Yifei Ma and Haiying Huang, 'DEM analysis of failure mechanisms in the intact Brazilian test', *International Journal of Rock Mechanics and Mining Sciences, Vol.102*, pp109-119(2018).
- 佐々木靖人:土層調査による表層崩壊の体系的な調 査手順の提案,日本地すべり学会関西支部講演集, pp.1-20,2012.
- 前田健一, 舘井 恵, 福間雅敏: 個別要素法を用いた粒子流れの構造と大粒径の浮き上がりマイクロメカニクス,砂防学会誌, Vol.64, pp3-14, 2011.

(2020.7.1 受付)