ストレステストを活用したコンテナターミナルの 浸水脆弱性・対策効果評価手法の提案

〇宮田正史¹・竹信正寬¹・大鳥靖樹²・小野憲司³ 吉田郁政⁴・赤間康一⁵・神野竜之介6・富田孝史⁷

- 1 国土技術政策総合研究所
- 2 東京都市大学 理工学部
- 3 京都大学 経営管理大学院
- 4 東京都市大学 建築都市デザイン学部
- 5 国土交诵省 鉄道局
- 6 パシフィックコンサルタンツ株式会社
- 7 名古屋大学 減災連携研究センター

■説明内容

- 1. 研究の背景、目的・概要
- 2. ストレステスト(ST)の概要
- 3. 検討フレームの全体像
- 4. ストレステストに必要となる準備
- 5. モデルコンテナターミナルへの適用事例
- 6. おわりに

0

1

■背景

- ○コンテナターミナル(CT)における高潮・浸水被害の頻発
- 多種・多様な施設・設備から構成され、所有者も様々
- 関係者間で合意しづらく、抜本的対策が進みにくい

■研究目的・概要

- CT全体の<u>浸水脆弱性と対策効果を見える化し、定量的</u> に評価できる実務的手法の提案(ストレステストST)
- その実現に向けた検討枠組み(フレーム)の提案
- 〇モデルCTを用いた試検討

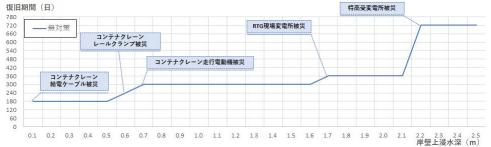
2. ストレステスト(ST)の概要

<u>Oストレステスト</u>

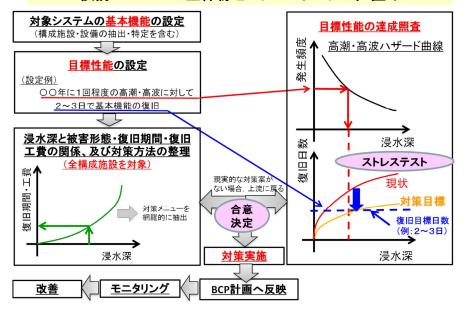
STは, ある対象やシステムに対して想定を超える負荷(ストレス)が作用した場合に, どの程度の安全性や耐久性等の余裕があるかを評価する試験. (金融分野、原子力分野等で適用)

○コンテナターミナルの浸水被害評価への適用

岸壁天端面から徐々に浸水を増加させた場合に、どの程度の浸水で、どの施設がどのような被害を受け、ターミナル全体としての機能復旧までどの程度の期間・費用を要するかを仮想的にテスト


モデルCT(無対策)のストレステストの結果

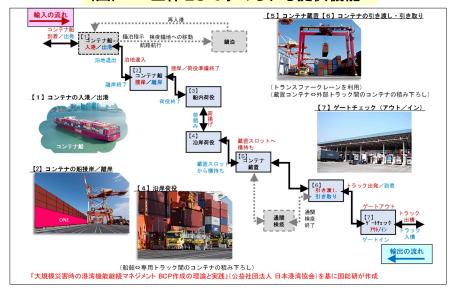
~岸壁上浸水深とCT全体の復旧期間の関係~



☞ コンテナクレーンや受変電所の浸水被害の影響が大きい

5

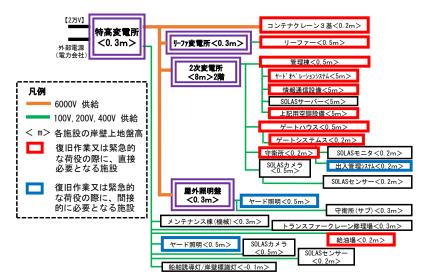
3. 検討フレームの全体像


検討フレームの全体像とストレステストの位置け

4. ストレステストの実施に必要となる準備

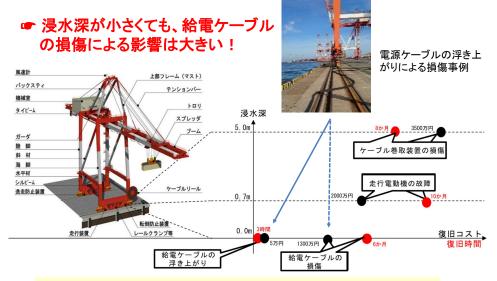
【①:CT全体としての提供機能の整理と対象施設の抽出】

(図) CT全体として求められる提供機能


_

(表) 浸水被害軽減対策の対象施設の抽出事例

対象施設	CTO	提供機能	モデルCT		
名称	仕様等	基本機能	その他機能	箇所·基数等	地盤高(m)
特高受電所*	22000 V	0	_	1 箇所	5.5
現場変電所(RTG用)*	6600 V	0	-	1 箇所	5.3
現場変電所(リーファー用)*	6600 V	0	_	1 箇所	6.8
コンテナクレーン*	6600 V	0	-	3 基	4.0
トランスファークレーン(RTG)	軽油	0	-	4 基	5.0~6.7
トラクターヘッド	軽油	0	_	8 台	4.5
シャーシ	_	0	-	8 台	4.5
トップリフター	軽油	0	-	1 台	4.5
フォークリフト	軽油	0	-	1 台	4.5
管理棟(オペレーションシステム含む)*	400 V以下	0	-	1 箇所	5.8
ゲート(ゲートハウス)*	400 V以下	0	-	1 箇所	5.3
照明塔*	400 V以下	-	夜間作業	6 基	5.0~6.7
給油所*	400 V以下	-	-	1 箇所	5.4
守衛室*	400 V以下	-	-	1 箇所	5.3
監視カメラ*	400 V以下	_	保安	1 台	5.0
フェンス(センサー)	400 V以下	-	保安	1 台	4.0
メンテナンスショップ*	400 V以下	_	_	-	_
危険物貯蔵庫*	400 V以下	-	-	-	_
洗浄施設*	400 V以下	_	_	-	-
蔵置コンテナ(実入り)	_	_	_	-	-
蔵置コンテナ(空)	_	-	-	-	_
蔵置リーファーコンテナ*	400 V以下	1	リーファーコンテナ蔵置	-	-
リーファー電源*	400 V以下	-	リーファーコンテナ蔵置	1列	6.8
コンテナヤード	_	0	-	_	_
構内道路	_	0	-	_	_


^{*:}電気供給が必要な施設(コンテナターミナル敷地内)

(図) 電気系統図と各施設の岸壁上地盤高

- ☞ 基盤となる電気系統が損傷受けると、直ちに稼働停止となる。

【 ②: 各施設の浸水深と復旧期間・復旧費用の関係整理 】

(図) GCの浸水深と復旧期間・復旧費用との関係 (メーカー等へのヒアリングの結果)

5. モデルコンテナターミナルへの適用事例

検討条件

- ・ 1バース分の既存コンテナターミナルを参考としてモデル化
- 対象施設: P.7の一覧表のとおり

検討ケース

10

〇ケースA:低コスト・短期対応(500万円)

〇ケースB: 受電施設等の重要施設の嵩上げ(12億円)

○ケースC: 防潮壁(高さ0.5m)をクレーン海側に設置(6億円)

g

浸水被害軽減対策の基本戦略A(モデルCT試算)

- ○対策時期: 短期的な取組み(日常的な災害対策・準備 → 直前準備対応)
- 〇対策条件【可搬設備による】:

電気設備を脱着式止水版(0.6m)、クレーン電源ケーブルを土嚢で防護

〇対策費用: 約500万円

浸水被害軽減対策の基本戦略C(モデルCT試算)

■基本戦略C

本

小頭用地を防護することにより浸水を防ぐ

○対策時期: 長期的な取組み(土地造成時、CTの新設時・大規模更新時など)

〇対策条件【**恒久設備のみ**】:

防潮壁(高さ0.5m)をクレーン海側及びターミナル全周にわたり設置

〇対策費用: 約6億円

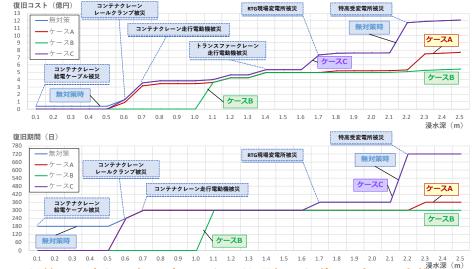
浸水被害軽減対策の基本戦略B(モデルCT試算)

■基本戦略B ● 浸水が発生しても、重要施設の被災を防いで早期復旧

対策時期: 中期的な取組み(重要施設の更新時など)

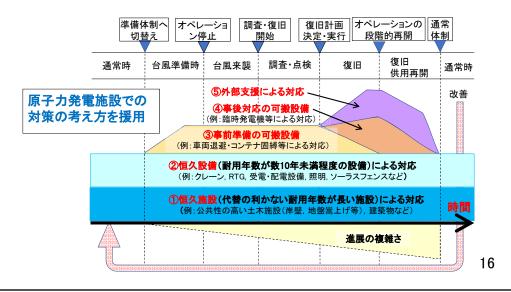
·対策条件【恒久設備+可搬設備(ケースA)】:

全ての受変電所・分電盤を2階(3.0m)に嵩上げ、


大型クレーンの足元の機械設備を1.0mまで嵩上げして評価

○対策費用: 約12億円(ただし、現在の設備を改良する場合)

13


(図)ストレステストの結果(岸壁上浸水深とCTの復旧期間・復旧費用との関係)

● 対策B: 効果高いが、コストも高い. 設備更新時に対応が合理的か

【 ③: 各施設の浸水被害対策の包括的整理 】

(図) 台風に対するコンテナターミナルにおける対策メニュー の分類の考え方(概念図)

■まとめ

- CT全体としての浸水脆弱性と浸水対策効果を定量 的に評価できる実務的な手法を提案(ストレステスト)
- 提案手法をモデルCTに適用し、その有用性を示した

■今後に向けて

- 各施設の浸水被害対策には、無数の組合せが考えられる。対策費用・時期も含めて、良好な<u>対策内容の探</u>素手法や合意プロセスの明確化が必要。
- <u>CT以外のターミナル等へ拡張</u>し、港湾全体(大規模で複雑なシステム)の浸水脆弱性を評価し、改善策を検討することが実務で実施できるようにする.
 - → 気候変動に対する協働防護プラン検討への活用

(表) GCにおける浸水被害対策メニューの抽出事例

損傷部材	設置高 (m)	対策メニュー	恒久対策	可搬による事前対応	設備対応事後対応	外部支援 による 対応	実現性·備考		実施工期	実施 コスト (万円)
	_	外部からの既設ク レーンの運搬・設置	_	_	-	0	無	4日以上かかる。	要確認	要確認
クレーン 本体	-	連続パース内で、複数基整備し、供用可能なものを融通	0	0	-	0	有	協定の締結が必要。 クレーンの重量により、岸壁が持たない場合がある。 クレーンの軌道を連続バース内で連結させる必要がある。	要確認	要確認
給電 ケーブル	0.0	流出防止用の土嚢・ 鉄板の仮設	-	0	-	_	有	_	1日	5
	0.0	予備品の購入・保管 (650 m/1 巻)	_	0	0		有	_	要確認	1500
走行電動機	0.7	高位置への設置	0	_	_	-	有	走行ユニット(走行電動機、リンク部、減速機)全体への対策が必要。	要確認	要確認

●関係者にて、対策メニューを体系的に整理すると、現実的な対策メニューの議論が可能になる!