
気象庁MSMデータの分析に基づく 台風性降雨クラスターの出現傾向分析

2018年台風21号接近時の降雨変化(MSM)

大阪公立大学 〇竹田茉矢 大阪公立大学 中條壮大

台風による複合災害の可能性

台風によって, 高潮・高波と豪雨が同時に生じると沿岸の浸水リスクは増大

• 高潮災害対策:河道内の水門を閉鎖

←大雨が予想される中で閉門が早すぎると、ポンプ性能が十分でない場合、内水氾濫や河川水氾濫が危惧される

高潮と豪雨の同時生起イベントの評価が大切

確率台風モデルによる台風性降雨の検討

低頻度台風災害の評価において大アンサンブル資料の活用が必要

- ex. d4PDFは膨大な年数(5400年相当)の予測結果を有し、活用が期待される ただし、台風の再現性にはバイアスがある.
- ⇒d4PDFのバイアス補正を行い.
- 多数の台風経路データを作成する確率台風モデルの提案
- •台風経路データ→高潮予測 従来から構築されている
- <u>台風経路データ→降雨予測</u> ほとんどない

ex. 端野ら(1987), Villarini et al.(2021)

←同心円状に分布する降雨としてモデル化 レインバンドなどの降雨クラスターの特徴分析/モデル化 ×

目的

台風特性値(緯度や気圧,移動速度,発生時期)と 降雨クラスター特性の関係を明らかにし、 台風降雨モデル構築の基礎資料とする

使用データ

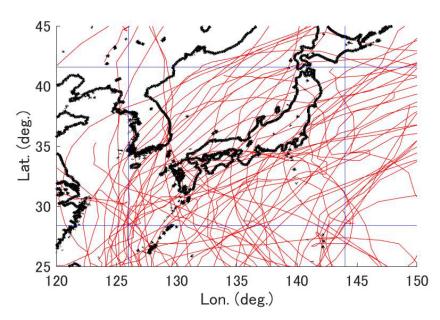
・メソ数値予報モデル(MSM)の降水量解析データ

<u>内 容</u>: 降雨強度(mm/h)

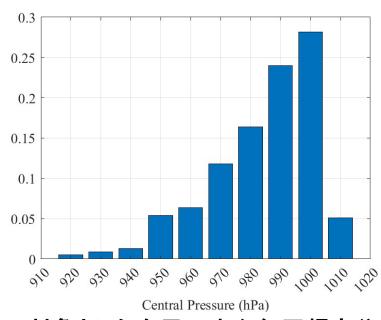
<u>データ範囲</u>: N22.4-47.6, E120.0-150.0

<u>解 像 度</u>: 緯度方向に0.0500度ごと,経度方向に0.0625度ごと

時間間隔: 1時間ごと


期 間: 2017年-2022年

気象庁のベストトラックデータ


内 容: 台風中心位置,中心気圧など

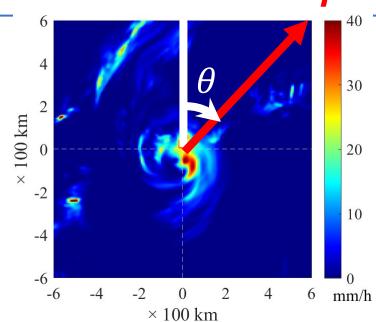
時間間隔: 6時間ごと

<u>対象の台風</u>: N28.4-41.6, E126.0-144.0 を通過した台風(60個)

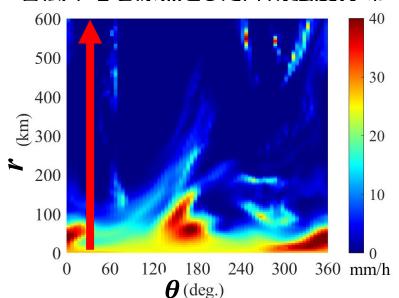
対象領域の設定と通過した台風経路

対象とした台風の中心気圧頻度分布

レインバンドの特徴解析方法


台風周辺の降雨分布の抽出

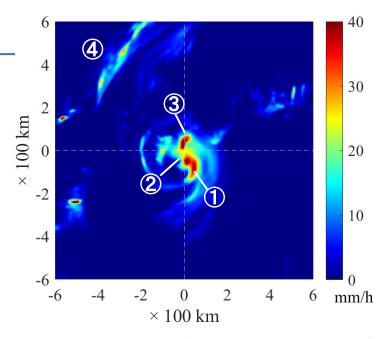
・台風中心から600km圏内の 降雨データを抽出


座標系の変換

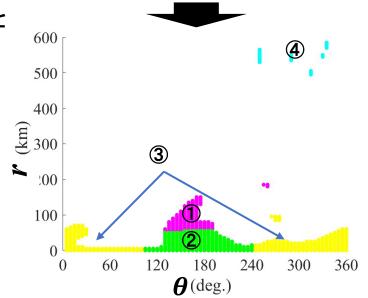
・座標軸を 台風中心からの距離r, 台風中心から見た方位角 θ に変換する.

- *台風中心付近における降雨クラスターの抽出を容易にするために、平均降雨分布を背景データとして分離した.
- *顕著な降雨クラスターのみを対象とし、比較的弱い降雨は2値化により除去した.

台風中心を原点とした降雨強度分布

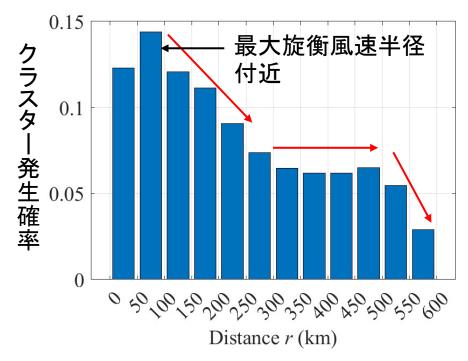


極座標系に変換した降雨強度分布


レインバンドの特徴解析方法

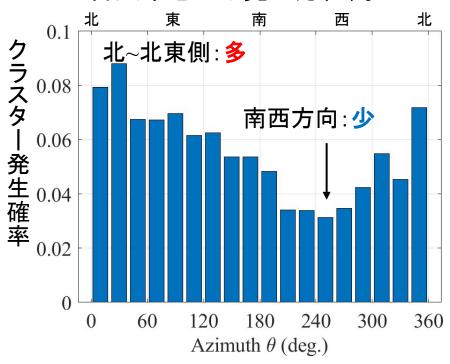
降雨帯のクラスタリング

- •k-means法でクラスター解析 点群距離が指標
- クラスタ数の決定: クラスター内誤差平方和の変化勾配が最大と なるクラスター数
- ·重心位置(r, θ)
- •最大降雨強度 R_{max}


極座標系に変換した降雨強度分布

降雨クラスターの分類結果

降雨クラスターの重心位置特性


降雨クラスター重心の 台風中心との距離r

台風中心からの距離 最頻値:50-100 km

←最大旋衡風速半径付近多

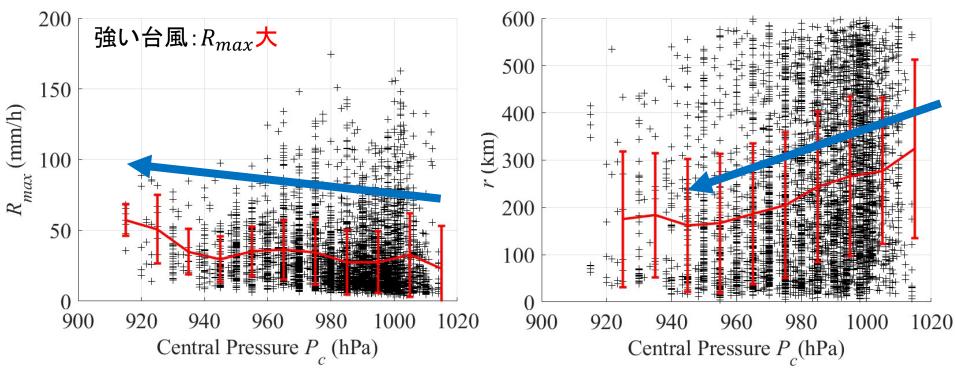
降雨クラスター重心の 台風中心から見た方位角 θ

台風中心から見た方位角

北~北東側多

南西方向:少 -

南西側の2倍


クラスター内最大降雨強度 R_{max} の支配因子について

各プロット: クラスター内最大降雨強度とパラメータのデータ点

赤線:各帯域の平均と標準偏差

中心気圧 P_c と最大降雨強度 R_{max} の関係

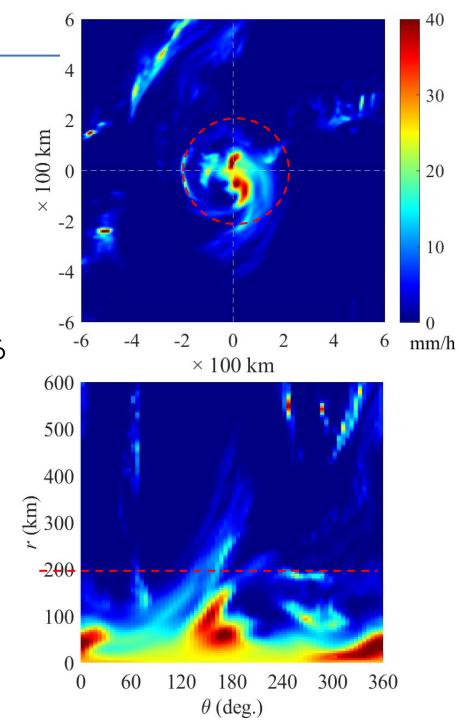
中心気圧 P_c と降雨クラスター距離rの関係

・強い台風ほど台風の中心付近に降雨クラスターを持つ確率が高い、 $\leftarrow P_c - R_{max}$ 関係からその降雨強度は大きくなる可能性が高い

降雨クラスターの移動特性

降雨分布図をr < 200, $200 \le r \le 600$ に分割

200 km圏内:台風の強風域内


200 - 600 km: 降雨帯のアウターバンド

$r-\theta$ 座標系での移動量を求める

・空間相関値から平均的な移動方向を求める (各領域の平均的な移動量)

$$\frac{d\theta}{dt} = \theta_{t_1} - \theta_{t_2}$$

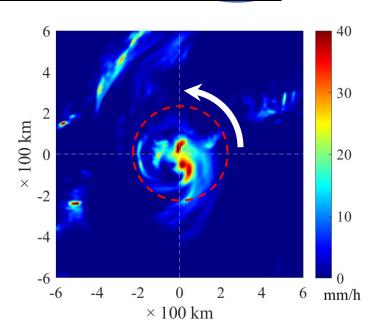
$$\frac{dr}{dt} = r_{t_1} - r_{t_2}$$

降雨クラスターの時間変化特性

• **200** km**圏内**の降雨クラスターの移動形態比率(%)

前時刻	時	計回り:C	:W		静止:SS		反時計回り:CCW		
	31.5			17.0			51.5		
次時刻	CW	SS	CCW	CW	SS	CCW	CW	SS	CCW
父时交	42.4	11.2	46.4	17.6	43.1	39.3	28.5	12.5	59.0

• 200~600 km圏内の降雨クラスターの移動形態比率(%)


前時刻	時	計回り:C	:W	静止:SS			反時計回り:CCW		
	37.8			8.3			53.8		
次時刻	CW	SS	CCW	CW	SS	CCW	CW	SS	CCW
	42.6	10.4	47.0	47.2	13.4	39.4	32.6	6.2	61.1

• 円周方向

反時計回り,動きの継続

北東→北(降雨クラスター特性値の分析より)

200 kmを境に大きな変化なし

降雨クラスターの時間変化特性

200 km圏内の降雨クラスターの移動形態比率(%)

RDP: 台風中心から離れる、PDN: 台風中心に近づく

前時刻	半径	方向に正:	RDP		静止:SS		半径方向に負:RDN		
	35.4				61.1		3.6		
次時刻	RDP	SS	RDN	RDP	SS	RDN	RDP	SS	RDN
	20.9	72.8	6.3	42.7	55.5	1.9	67.9	26.8	5.4

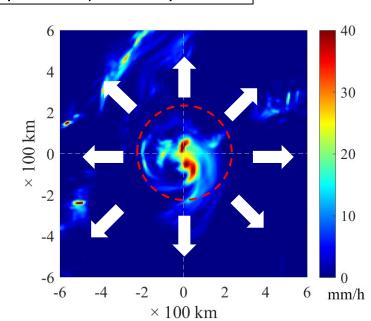
200 - 600 km圏内の降雨クラスターの移動形態 比率(%)

前時刻	半径方向 <mark>に正:RDP</mark>			静止 <mark>:SS</mark>			半径方向に負:RDN		
	55.2			19.4			25.5		
次時刻	RDP	SS	RDN	RDP	SS	RDN	RDP	SS	RDN
	59.8	17.0	23.3	52.7	37.9	9.4	47.7	11.1	41.2

• 半径方向

主として中心から離れる

200 km**圏内**:


停止61.1%,

中心から離れる35%

200 - 600 km:

停止19.4%,

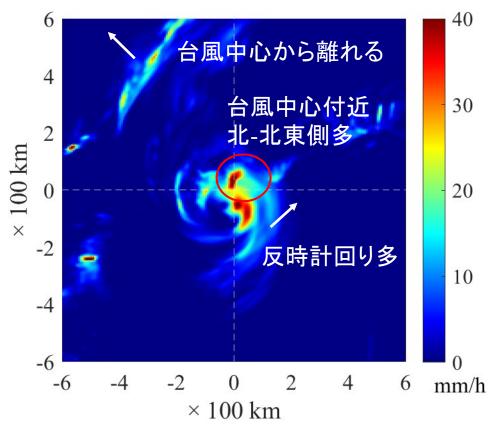
中心から離れる55.2% (←離れるのが速い)

まとめ

気象庁のMSMの降雨解析資料 台風周辺に形成される降雨クラスターの出現傾向分析

降雨クラスター

台風中心近く(説明を省略) 北~北東側に多い.


降雨強度

緯度(説明を省略)や中心気圧に依存 降雨クラスターの方位角

移動速度, 緯度, 発生月に依存 (説明を省略)

降雨クラスターの移動

反時計回り, 台風から離れる方向

課題

- 2値化による降雨クラスターの識別←検討の余地あり
- 6年間の資料←低頻度事象の影響は十分ではない。
- 日本周辺のデータ:地形的効果が含まれるものが多い
- 台風と前線の干渉
- ⇒ 台風降雨解析資料を用いて影響を切り分けた評価が必要