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FS,; = factor of safety based on vertical gradient
icy = critical vertical gradient = y'/y,,
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iy = vertical exit gradient at point of interest= A./z; typically the landside toe

z: = vertical distance to surface, typically the landside blanket thickness

hx = excess head (above hydrostatic) at the point of interest, typically bottom of blanket
(h, at the embankment toe and h, at a distance x from the embankment toe)

y' = average effective (or buoyant) unit weight of blanket (overlying soil) = ysar = yw

vsar = saturated unit weight of blanket limited to no more than 112.5 1b/ft3

vw = unit weight of water
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where: E, iviiRZ

FS,, = factor of safety based on vertical gradient
iy = critical vertical gradient = y'/y,,
iy = vertical exit gradient at point of interest= A./z; typically the landside toe

vertical distance to surface, typically the landside blanket thickness
h, = excess head (above hydrostatic) at the point of interest, typically bottom of blanket
(h, at the embankment toe and h, at a distance x from the embankment toe)

y' = average effective (or buoyant) unit weight of blanket (overlying soil) = ysar = Y
Ysar = saturated unit weight of blanket limited to no more than 112.5 1b/ft?
vYw = unit weight of water
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where:

Dy = the distance from the landside levee toe.
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hsubstratum = total head at the base of the top stratum or blanket at the waterside toe of the levee

based on a seepage analysis.

ipLh = horizontal hydraulic gradient to select Dy, as discussed below.

W = levee width

Characterization of the Substratum | iDLh |
%R ——> (Cy<2 and fines content < 5% 0.02
Cu<4 and 5% < fines content < 10% 0.05
All other coarse-grained soils 0.1
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