河川技術に関するシンポジューム、2019年6月12日 弥生会館

山地流域における土砂水理現象とこれらを解くための鍵

江頭進治 土木研究所 ICHARM s-egashira77@pwri.go.jp

1. 豪雨に伴う山腹崩壊・土石流の発生と発達・減衰(堆積)過程

2. 流砂・河床変動を伴う洪水流

3. 遷移領域における河道設計の考え方

Each underlining number shows No. of dead and missing.

2017年7月九州北部豪に伴う土砂・洪水災害(赤谷川流域)

赤谷川上流域の小渓流における土石流堆積物 (2017 九州北部豪雨)

(2017 九州北部豪雨)

国土地理院撮影

2018年西日本豪雨災害 総頭川 (広島県、坂町)

2017年7月九州北部豪雨災害時の赤谷における洪水・流砂現象の縦断分布

・山腹崩壊・土石流

崩壊土砂の流出過程

	「 ^{停止(移動経路の})縦断形状、表土層の分布等)	
山腹崩壊土砂		「流域規模での土砂流出	質点系支配方程式
	L 土石流を形成		
	(流動化の条件)	L 渓流における土石流の挙動	水深平均二次元
		土砂流出過程	文吅力住式

崩壊土砂の流出過程(土石流の過程)-抵抗則と侵食・堆積速度

抵抗則

侵食・堆積速度

 $E = E(\theta, \theta_e, -, -)$

- θ 斜面や渓床の局所勾配
- θ_e 土石流を構成する石礫の土砂濃度 c_c
 に対応する平衡勾配
 - $\theta > \theta_e$ 侵食

 $\theta < \theta_e$ 堆積

平衡勾配は

$$\tan\theta_e = \frac{1}{(\sigma/\rho - 1)c_c + 1} \left[\left(\frac{\sigma}{\rho} - 1 \right) c_c \tan\phi + \frac{c_h}{\rho g h} \right]$$

$$\sigma$$
 土粒子の質量密度 c_c 土石流を構成する石礫
 ρ 流体層の質量密度 の土砂濃度

h 流動深 Ch 渓床材料の粘着力

渓床侵食による土石流の発達

崩壊土砂に含まれる微細砂が固相から流体相 へ相変化すると、土石流の流動性が増加ずる

簡単のため渓床材料の粘着力を0とすると、平衡勾配は

$$\tan \theta_e = \frac{\left(\sigma/\rho - 1\right)c_c}{(\sigma/\rho - 1)c_c + 1} \tan \phi$$

崩壊土砂の土砂濃度 c_* 間隙が水で飽和 $c_c = p_c c_*$ $c_f = p_f c_*$ $\rho = (\sigma - \rho_w)c_f + \rho_w$ 土砂濃度の減少 $c_* \rightarrow c_c$

間隙水の質量密度の増加 $\rho_w \rightarrow \rho$

平衡勾配の減少→流動性の増加

土石流・流木の支配方程式 (水深平均二次元モデル)

質量保存則

水と土砂(粗い土砂+微細砂) $\frac{\partial h}{\partial t} + \frac{\partial uh}{\partial x} + \frac{\partial vh}{\partial y} = \frac{E}{c_*}$

粗い砂礫について

$$(0 < E) \qquad \frac{\partial c_{c}h}{\partial t} + \frac{\partial \gamma c_{c}uh}{\partial x} + \frac{\partial \gamma c_{c}vh}{\partial y} = p_{c}E$$
$$(E < 0) \qquad \frac{\partial c_{c}h}{\partial t} + \frac{\partial \gamma c_{c}uh}{\partial x} + \frac{\partial \gamma c_{c}vh}{\partial y} = E$$

流体相として振る舞う微細砂について

$$(0 < E) \quad \frac{\partial (1 - c_{\rm c})c_{\rm f}h}{\partial t} + \frac{\partial (1 - c_{\rm c})c_{\rm f}uh}{\partial x} + \frac{\partial (1 - c_{\rm c})c_{\rm f}vh}{\partial y} = p_{\rm f}E$$

$$(E < 0)$$

$$\frac{\partial (1-c_{\rm c})c_{\rm f}h}{\partial t} + \frac{\partial (1-c_{\rm c})c_{\rm f}uh}{\partial x} + \frac{\partial (1-c_{\rm c})c_{\rm c}vh}{\partial y} = (1-c_{*})c_{\rm f}E$$

堆積過程

E 侵食速度(E<0:堆積)
 P_c 表層における粗い砂礫の含有率
 C_c 流れ中の粗い砂礫の濃度
 P_f 表層における細粒土砂の含有率
 C_f 流体相における細粒土砂の濃度
 c #静止堆積層の土砂濃度

運動量保存則	
$\frac{\partial uh}{\partial t} + \frac{\partial uuh}{\partial x} + \frac{\partial vuh}{\partial y} = -gh\frac{\partial H}{\partial x} - \frac{\tau_{bx}}{\rho}$	h/ flow H K
$\frac{\partial vh}{\partial uvh} \frac{\partial vvh}{\partial vvh} , \frac{\partial H}{\partial t} \tau_{hv} H$	$ \overline{\theta} $ $ \overline{z_b} $ 河
$\frac{\partial t}{\partial t} + \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} = -gh\frac{\partial y}{\partial y} - \frac{\partial y}{\rho_m} - \frac{\partial y}{\partial y} - \frac{\partial y}{\partial y}$	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
河床材料の質量保存則	
$\frac{\partial z_b}{\partial z_b} = -\frac{E}{2}$	$ \rho_{\rm m} = (\sigma - \rho)c_{\rm c} + \rho \pm \overline{\epsilon} $
$\partial t \qquad c_* \cos \theta$	$\rho = (\sigma - \rho_{\rm w})c_{\rm f} + \rho_{\rm w} \pm \pi$
侵食速度式(<i>E</i> < 0: 堆積速度)	
$E = c \tan(\theta - \theta)$	θ 土砂濃度 C $_{c}$ に対する平
$\frac{1}{\sqrt{u^2 + v^2}} = c_* \tan(\theta - \theta_e)$	Ø 砂礫の摩擦角
$\tan \theta_e = \frac{(\sigma/\rho - 1)c_c}{(\sigma/\rho - 1)c_c + 1} \tan \phi$	𝐾 静止堆積層の土砂濃度
$(0 / p - 1)c_c + 1$	au ・ 芒田、江商、山川・21

表面の標高 「床面の標高 $_x$, au_{by} 河床せん断力 動深 *u*,v 流速

5流の質量密度 日流の流体相の質量密度 **F衡勾**配

τ_b: 芦田・江頭・中川:21世紀の河川学、京都大学出版会,2008.

流木の質量保存則(移流方程式)(土石流は層流だから拡散項を省略)

 $\partial z/\partial t < 0 \quad (E > 0)$

$$\frac{\partial C_{drf}h}{\partial t} + \frac{\partial C_{drf}uh}{\partial x} + \frac{\partial C_{drf}vh}{\partial y} = E\frac{s}{D}r(t,x,y)$$

$$\frac{\partial S}{\partial t} = -E\frac{S}{D}r(t,x,y)$$

$$\frac{\partial T}{\partial t} = -E\frac{S}{D}r(t,x,y)$$

$$\frac{\partial T}{\partial t} = -E\frac{S}{D}r(t,x,y)$$

$$\frac{\partial C_{drf}h}{\partial t} + \frac{\partial C_{drf}uh}{\partial x} + \frac{\partial C_{drf}vh}{\partial y} = \frac{EC_{drf}r(t, x, y)}{\hat{\pi} \pi \sigma \# \hat{t}}$$

c
drf土石流における流木濃度D流木の根茎深S単位面積当たりの流木(立木)の貯留量(貯留高)

侵食速度式 (E < 0: 堆積速度) $\frac{E}{\sqrt{u^2 + v^2}} = c_* \tan(\theta - \theta_e)$ $\tan \theta_e = \frac{(\sigma / \rho - 1)c_c}{(\sigma / \rho - 1)c_c + 1} \tan \phi$ θ 土砂濃度 c c c に対する平衡勾配 ø 砂礫の摩擦角 質点系モデル

侵食過程(0<*E*)において 崩土全体、粗い粒子及び微細砂の質量保存則は、それぞれ $v \frac{dA}{dx} = \frac{El}{c}$ $v \frac{dc_c A}{dx} = p_c El$ $v \frac{dc_f (1-c_c) A}{dx} = p_f El$ $l = \sqrt{A/\alpha}$ (形状の相似性)を仮定すると、上式は $\frac{dA}{dx} = \tan(\theta - \theta_e) (\frac{A}{\alpha})^{1/2} \qquad \frac{dc_c A}{dx} = p_c c_* \tan(\theta - \theta_e) (\frac{A}{\alpha})^{1/2}$ $\frac{dc_f(1-c_c)A}{dx} = p_f c_* \tan(\theta - \theta_e) (\frac{A}{\alpha})^{1/2}$ 堆積過程(*E*<0)において、同様に $\frac{dA}{dx} = \tan(\theta - \theta_e) (\frac{A}{\alpha})^{1/2} \qquad \frac{dc_c A}{dx} = c_* \tan(\theta - \theta_e) (\frac{A}{\alpha})^{1/2}$ $\frac{dc_f(1-c_c)A}{dx} = c_f(1-c_*)\tan(\theta-\theta_e)(\frac{A}{\alpha})^{1/2}$ これらは、区分的に容易に解くことができるので、 流域規模における土砂流出分布の議論に有効と思われる。

堆積過程

堆積過程において、粗い粒子が骨格を構成し、 その間隙に流体相(水と微細砂)が取り込まれ る仕組みで堆積が進む。

$$\frac{E}{v} = c_* \tan(\theta - \theta_e) \qquad \tan \theta_e = \frac{(\sigma/\rho - 1)c_c}{(\sigma/\rho - 1)c_c + 1} \tan \phi$$
$$\rho = \frac{1}{1 - p_c c_*} \{ (1 - c_*)\rho_w + p_f c_*\sigma \} \qquad c_c = p_c c_*$$

山腹崩壊・土石流の解析例

赤字:鍵となる現象及び現象のモデル化

降雨条件、流域表層地形、表土層モデル、 水深平均2次元モデルによる流出解析、 表土層の不安定解析(無限長斜面モデル)

微細砂の相変化、崩壊の時空間分布、 崩壊土砂および流木の運動に関する 質点系モデル 流域における表面流・浸透流及び 崩壊・土石流発生の時空間分布

→ 流域における流出土砂量および流木 の時空間分布

水深平均平面2次元支配方程式 抵抗則

侵食速度式

微細砂の相変化

流木の生成・輸送モデル

渓流における土石流の発達・減衰過程 および流木の流出過程

Izu-oshima event 2013

土石流による流木の堆積(山崎ら 2018)

Driftwood volume in unit area of flow body (mDriftwood volume deposited in unit (Concentration × Flow depth) of river bed (m)

(山崎ら 2018)

2. 流砂・河床変動を伴う洪水流

・評価の対象となる現象

微細砂の供給源 (土石流堆積土砂) 上流域の河道には土石流堆積土砂が洪 水によって浸食されている(乙石川、 2017年九州北部豪雨)

(2017 九州北部豪雨)

赤谷川下流の流路閉塞(2017年九州北部豪雨)

広島県、総頭川市街地部の流路閉塞 (2018年西日本豪雨)

2017年7月九州北部豪雨災害時の赤谷における洪水・流砂現象の縦断分布

流れ:水深平均,時間平均2次元流れの質量保存則と運動量保存則

流砂:河床材料の質量保存則(粒径別)

流水中の流砂の質量保存則(粒径別)-- 浮遊砂、掃流砂

掃流砂量式(粒径別)、浮遊砂・wash-load の侵食・堆積率

流木:流水中及び河床における質量保存則(中立粒子の移流拡散方程式)

生成率、捕捉率

上流端条件

洪水ハイドロ:土石流が連続的に洪水流に遷移する可能性はほとんどない。従って、上 流端条件として降雨流出モデルによる洪水ハイドロを用いることができ る。

流砂: 掃流砂:平衡給砂

比較的粗いものは平衡給砂

浮遊砂

細かいものはWash-loadに含める

Wash-load:河岸崩壊土砂および土石流堆積土砂の洪水流による侵食

流木: 流木濃度=上流域における流木生産量/洪水主要部の洪水総量

 $V_{drf} = v_{drf}A_e$ v_{drf} 単位面積当たりの立木の体積 A_e 崩壊・土石流による侵食面積

H:水位 *h*:水深 *u*,*v*: 流速のx, y成分 τ ,: 河床せん断力 $\tau_{bx} = \tau_b \frac{u}{\sqrt{u^2 + v^2}}$ $\tau_{by} = \tau_b \frac{v}{\sqrt{\mu^2 + v^2}}$ $v = \frac{\kappa}{6} u_* h$ 渦動粘性係数 $k_{t} = 2.07 \ u_{*}^{2}$ 乱れの運動エネルギー *u*∗:摩擦速度

流砂に関する支配方程式

-流水中の浮遊砂の質量保存則(粒径階級 d_iについて)

 $h: 水深 z_b: 河床高 E_i, D_i: 浮遊砂/wash-loadの侵食率、堆積率(粒径階級 <math>d_i$ について) $q_b:$ 単位幅掃流砂量 d_i

掃流砂層および遷移層における粒度分布式(粒径別質量保存則)

掃流砂層モデル(流砂の分級モデル) (竹林 2005)

流木の質量保存則(中立粒子として)

$$\frac{\partial z}{\partial t} < 0 \quad \frac{\partial C_{drf}h}{\partial t} + \frac{\partial C_{drf}uh}{\partial x} + \frac{\partial C_{drf}vh}{\partial y} = \frac{\partial}{\partial x} \left(\varepsilon_x h \frac{\partial C_{drf}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\varepsilon_y h \frac{\partial C_{drf}}{\partial y} \right) - c_* \frac{\partial z}{\partial t} \frac{S}{D} r(t, x, y) - v_n C_{drf} p_b \delta(x - \tilde{x}_i, y - y_i)$$

 $\left(\frac{\partial S}{\partial t} = c_* \frac{\partial z}{\partial t} \frac{S}{D} r(t, x, y) + v_n C_{drf} p_b \delta(x - x_i, y - y_i) \right)$
流木の生産 (侵食)

 c_{drf} 流水中の流木濃度 S 単位面積当たりの流木貯留量(貯留高) v_n 補足構造物に対する流速 D 流木の根茎深 (x_i, y_i) 補足構造物の位置 δ ディラックのデルタ関数

流木の離脱・補足率と相対水深

解析に際して、北海道大学 清水先生のグループで開発されたソフト、 京都大学 竹林先生のグループが開発されたソフトを活用させていただいている。

Schematic diagram of sediment erosion

微細砂の取り込み

$$q_{sw} = p_{fD}c_{*D}\left[-S\frac{\partial z_b}{\partial t}\right] = p_{fD}(q_{bx}l_y + q_{by}l_x) \qquad \tan \theta_s = \frac{\chi i_{by}}{(1+\chi)i_{bx}} \quad \text{Angle between bed load direction and x-axis.}$$

$$q_{bx} = q_b \cos \theta_s \qquad \chi = \frac{i_{bx}}{(\tan \phi - i_{bx})} \quad \chi = \frac{i_{bx}}{(\tan \phi - i_{bx})} \quad \chi = \frac{i_{bx}}{(\tan \phi - i_{bx})}$$

Discharge/ Sediment supply

Case4(移動床、微細砂供給、流木)

河床における流木堆積に関 する計算値と現地の状況 (原田ら 2018)

Case1	Fixed bed
Case2	Movable bed
Case3	Movable bed with fine sediment supply
Case4	Movable bed with fine sediment and driftwood supply

ピーク流量時における洪水流 (原田ら 2018)

Case1	Fixed bed
Case2	Movable bed
Case3	Movable bed with fine sediment supply
Case4	Movable bed with fine sediment and driftwood supply

流れに対する橋梁部の流木集積が洪水流に及ぼす影響 (原田ら 2018)

- 3. 遷移領域における河道設計の考え方
 - ・計画規模の降雨条件、あるいは気候変動下において想定される降雨条件

河床は、次式からわかるように、必ず拡幅部において上昇する。

$$\frac{z_{b2} - z_{b1}}{h_1} = 1 - \left(\frac{n_2}{n_1}\right)^{6/7} \left(\frac{B_1}{B_2}\right)^{\frac{3(2m-1)}{7m}} + \frac{1}{2} F_{r1}^{2} \left\{1 - \left(\frac{n_1}{n_2}\right)^{\frac{12}{7}} \left(\frac{B_1}{B_2}\right)^{\frac{2(m+3)}{7m}} \right\} - \frac{i\Delta x}{h_1}$$

上式は、水流の連続式、疑似等流のMannig則、流砂の連続式、流砂量式の関数形、 エネルギー保存式を用いて求められtる。

$$\not = \boxed{ \begin{array}{c} v_1 h_1 B_1 = v_2 h_2 B_2 \\ q_{b1} B_1 = q_{b2} B_2 \\ \frac{v_1^2}{2g} + h_1 + z_{b1} = \frac{v_2^2}{2g} + h_2 + z_{b2} + i\Delta x \end{array} } v_2 = \frac{1}{n_2} i_2^{1/2} h_2^{2/3} \\ v_2 = \frac{1}{n_2} i_2^{1/2} h_2^{1/2} \\ v_2 = \frac{$$

仲間とともに、流域における流砂問題にかかわる研究を進めております が、その際、私が気にしていることを鍵として話題提供をいたしました

ご議論、コメントをいただければありがたく存じます

長時間ありがとうございました

