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Approaches 
to the 
estimation 
of extreme 
floods:

I. Purely statistical approach to the estimation of the 
extreme flood;

II. Estimation of extreme flood as a result of a rainfall-
runoff analysis with input from statistical analysis of 
extreme precipitation; 

III. Conventional Probable Maximum 
Precipitation/Probable Maximum Flood Estimation;

IV. Estimation of Maximum Flood based on Numerical 
Modeling of the Critical Atmospheric-Hydrologic 
Processes



A. Methodology based on considering the flood peak discharge as a random variable:

The standard procedure is to construct an empirical frequency histogram 
a) for the peak discharge of an annual maximum flood event (Gumbel 1941, Dalrympl

1960, Stedinger 1983, Smith J. 1987, WMO 1989, Madsen et al. 1997, Katz et al. 2003, 
Robson and Reed, 2008, and others), or

b) of the peak discharge over a specified threshold (WMO 1989, Smith RL 1989, Katz et al. 
2003, Robson and Reed 2008, and others) from the available hydrologic data.

▪ Extrapolate this histogram to long return periods based on the fit of the empirical 
frequency histogram by a theoretical probability distribution, such as Log Pearson Type III 
distribution, Generalized Extreme Value Distribution, Gumbel’s distribution, etc. 

▪ Then estimate the extreme flood discharge for a specified return period from the 
theoretical probability distribution tail.

I. Purely statistical approach to the estimation of the extreme flood 
based on available historical hydrologic data:



B. Methodology that considers flood peaks as a stochastic process:

▪ This approach is mainly based on Peaks over a Threshold (POT) framework. 
▪ After specifying a threshold, the flood peak discharge occurrences above 

that threshold are modeled as a point stochastic process, either as:

I. Purely statistical approach to the estimation of the extreme flood 
based on available historical hydrologic data:

▪ a Poisson process (Todorovic and Zelenhasic, 1970; RL Smith, 1989 and 
others) that assumes flood peak occurrences are mutually independent, or 

▪ a Poisson Cluster process (Cervantes et al. 1983).



i. Development of frequency curves for extreme precipitation (probable maximum precipitation), 
considered as a random variable, based on historical data for specified durations;

This approach, popularized by Herschfield (1961, 1965), develops estimates of maximum precipitation 
depths as function of geographical location and precipitation duration. It is based on the frequency factor 
formulation of Ven-Te-Chow (1951). Recent improvements to this estimation procedure were provided by 
various authors (Koutsoyiannis 1999, Papalexiou and Koutsoyiannis 2013, Nerantzaki and Papalexiou 2021).

ii. Development of a Stochastic Weather Generator (WG) for the time series of precipitation and other 
atmospheric variables correlated with precipitation;

A WG produces synthetic time series of weather data for a location based on the statistical characteristics 
of observed weather at that location (Hutchinson 1987, Richardson 1991). The first step in the development 
of a WG is to model daily precipitation in terms of a Markov Chain or an alternating Renewal Process. The 
second step is to model the remaining weather variables of interest (temperature, solar radiation, humidity 
and windspeed, etc.) conditional on precipitation occurrence. 

II. Estimation of the extreme flood based on a rainfall-runoff simulation with 
input from extreme precipitation that is estimated by statistical approaches



After the precipitation fields are simulated by one of the above approaches, they can then be input to a rainfall-
runoff model to produce a corresponding streamflow event that will correspond to the precipitation field of a 
specified return period.

iii. Modeling of precipitation by stochastic models;
In this approach precipitation is modeled in terms of the occurrence times of precipitation events above a prespecified 
threshold as a stochastic point process which are then marked by precipitation depths (Todorovic 1979,  Cervantes et al. 
1983, Waymire et al. 1984, Smith 1989, Rodrigues-Iturbe et al. 1988, Kavvas et al. 1988, Cowpertwait 1998 and others).

iv. Modeling precipitation random fields by fractals;
In this approach the precipitation fields are analyzed and modeled as fractal or multifractal fields to accommodate their 
time-space scaling (Schertzer and Lovejoy 1987, Gupta and Waymire 1993, Lovejoy and de Lima 2015, and others).

v. Modeling extreme precipitation by statistical storm transposition;
In this approach the historical precipitation field spatial shape is approximated by a certain geometric shape (circular or 
elliptical) and the centroid of the approximate field is transposed according to a probability distribution (Gupta 1972, 
Foufoula-Georgiou 1989). Then by means of the probability distribution of the storm centroid an ensemble of 
precipitation fields are generated, from which one can obtain basin precipitation depths corresponding to specified return 
periods. However, this method of historical storm transposition does not conserve the mass, momentum or energy of the 
historical storm system. Also, the uncertainty in the storm centroid location is different then the chronological uncertainty.

II. Estimation of the extreme flood based on a rainfall-runoff simulation with 
input from extreme precipitation that is estimated by statistical approaches



ISSUES WITH THE ABOVE STATISTICAL APPROACHES
1.  None of the above statistical methods for estimating precipitation or floods are physically-based in 

that they do not conserve neither the mass, nor the momentum nor the energy in the historical 
storm systems. 

2.  All of the above methods, except those studies that address the precipitation-flood events as 
clusters, consider the extreme flood event as a single event with a single extreme peak discharge, 
although some early studies (WMO 1989) did stress the importance of treating floods as a 
sequence of events. However, clustering of the flood events as a sequence of inflows to a dam 
create the most critical conditions for the failure of the dam.

3.  Those stochastic Poisson cluster models that address precipitation as a clustered process, do not 
address the modeling of the floods resulting from these precipitation field clusters.

4.  None of the above statistical approaches differentiate and model explicitly the floods with respect 
to different storm mechanisms (such as floods from atmospheric rivers, floods from extratropical 
cyclonic systems, floods from mesoscale convective systems, floods from tropical 
cyclones/hurricanes/typhoons, etc.). However, flood events may behave very differently under 
different severe storm mechanisms.

5.  None of the statistical methods produces realistic spatial configurations of the extreme precipitation 
fields which vary drastically with different storm mechanisms.



Conventional Method for Estimating Probable Maximum Precipitation (PMP) and Probable 
Maximum Flood (Paulhus and Gilman 1953, Hansen et al. 1977, Schreiner et al. 1978, WMO 
1989, 2009,  and various Hydrometeorological Reports of US NWS):

Definition of PMP and PMF (World Meteorological Organization (WMO), 2009)
▪ Probable Maximum Precipitation (PMP) is defined as the theoretical 

maximum precipitation for a given duration under possible meteorological 
conditions.  

▪ Probable Maximum Flood (PMF) is the theoretical maximum flood due to a 
PMP at a specified river basin or geographical location (such as the inflow 
location of a dam, or the location of a bridge, etc.).

Conventional PMP estimation procedure (WMO, 2009):
i. Select the historical representative severe storm event; 
ii. Compute the Depth-Area-Duration curves for the selected storm; 
iii. Separate the convergence part of the storm from its orographic component; 
iv. Maximize the moisture in the convergence component of the storm with respect to precipitable water, 
v. Transpose this maximized storm component virtually in order to maximize the precipitation over the target watershed; 
vi. Adjust the estimate for the orographic component (elevation and barrier adjustment); adjust the estimate with respect 

to duration and area.



Approximations of the Conventional Method for Estimating PMP:

1. The Conventional PMP estimation method artificially separates a storm into 
non-orographic (convergence) and orographic components while in reality a 
storm system is a whole that cannot be separated into such components;

2. Precipitation is taken proportional to precipitable water, ignoring the 
contribution of the moisture flux; 

3. The storm transposition is performed virtually, not actually, by adjusting 
certain storm characteristics; 

4. The conservation of mass, momentum and energy of a storm system are not 
ensured in the storm maximization operations of the Conventional PMP.



JANUARY 1 – FEBRUARY 28, 2017 SEVERE STORM AND FLOOD OVER 
CALIFORNIA



General weather pattern across the Eastern Pacific Ocean and West Coast for each storm period during

January and February 2017 (CNRFC, 2017).



Atmospheric River

In the west coast of US, severe storms are mainly caused by a 

high-moisture atmospheric flow coming from a tropical zone 

of the Pacific Ocean, and referred to as “atmospheric river 

(AR)”. 

[From NWS California-Nevada RFC]



Precipitable Water Fields over the Pacific Ocean near the coast of California on January-February, 2017 California Flood



California River Network System and River Basins



Inflow hydrograph to Shasta Lake during January 1 – February 28, 2017 Flood at Shasta 
Lake Watershed in California



Inflow to Folsom Lake at American River Watershed, California during the January 1 –
February 28, 2017 Flood





In considering maximum precipitation in the Western Coastal region 
of the US, 
It is critical to consider how to maximize precipitation caused by the 
Atmospheric River (AR). 

Development of physically-based method 
to maximize precipitation caused by ARs.



II. Perturbation of the atmospheric fields for the selected historical 
severe storm events.

Precipitation Maximization by a Numerical Atmospheric 

Model for Atmospheric River (AR) Storm Systems

I. Select the historical severe storm events from the reconstructed 

historical precipitation record at a target watershed

✓ Identify the ARs that hit the specified watershed during each of 

the selected historical severe storm events.

II-2. Relative humidity 

optimization

II-1. Atmospheric Boundary 

Condition Shifting

III. Probable Maximum Precipitation (PMP) over a target watershed



Limitations in using observed precipitation data;

• The number of observation stations in a target study area and 
their recording periods are insufficient.

• The PRISM daily data set (Daly et al. 2008, 2013) covers the 
continental US for the period 1981 to present at 4 km grid 
resolution (PRISM Climate Group, 2016).

• Many of the recorded historical floods over a target watershed 
may have happened prior to 1981. 

I. Select the historical severe storm events from the reconstructed 

historical precipitation record at a target watershed;

Meanwhile, there are various historical atmospheric reanalysis 
data sets some of whom date as far back as to 1851.



Global Reanalysis data

NOAA/CIRES 20th Century 
Reanalysis (20CR) Version 2c
- 1851 – 2014
- Horizontal resolution of 2 
degree (T62), 24 vertical levels

NCEP Climate Forecast System 
Reanalysis (CFSR)
- 1979 – 2016
- Horizontal resolution of 0.5 
degree (T382), 64 vertical levels

ECMWF Twentieth Century 
Reanalysis (ERA-20C)
- 1900 – 2010 
- Horizontal resolution of 125 km 
(T159), 37 vertical levels

• Reconstruction of the historical atmospheric conditions over any target watershed over the 
world can be performed by means of reanalysis global data sets that are available from 
various atmospheric organizations around the world, such as US NCAR, ECMWF, etc.

• Hence, it is necessary to reconstruct the historical atmospheric conditions at hourly or 
finer intervals by a numerical atmospheric model after the model is calibrated and 
validated by the available PRISM daily data.



Weather Research & Forecasting model (WRF)

WRF and WRF pre-processing system

WPS (WRF Preprocessing 
System):

• Data format 
conversion

• Interpolation
• Static data processing

WRF:
Dynamical downscaling of 

a global reanalysis into 
high resolution regional 

atmospheric data 

Global 
gridded 

data

Dynamically downscaled 
into target region/domain



I. Select the historical severe storm events from the reconstructed 

historical precipitation record at a target watershed

Use a numerical atmospheric model (WRF) to 
reconstruct atmospheric fields; 

Choose the most severe historical storms based on the 
moisture conditions in these storms (such as precipitation 
depth or maximum IVT exceeding a specified threshold 
during the storm duration);

Shift the atmospheric fields so that the atmospheric 
river strikes the target watershed at the optimal 
location and in the optimal direction to produce the 
maximum precipitation over the watershed.



Differences from traditional PMP Approach

1. Shift the atmospheric BCs with respect to only latitude  (Shift1D)  and then also with longitude (Shift2D) 
(Ohara et al. 2011, Ishida et al. 2015);

2. Shift the atmospheric BCs along an identified AR until the basin-average precipitation reaches a maximum 
and then starts to decrease. 

II. Perturbation of the atmospheric fields for the selected historical severe storm events.

II-1. Atmospheric Boundary Condition Shifting Method

▪ Uses a physically-based numerical atmospheric model 

▪Produces all relevant atmospheric variables’ information for a given severe storm (besides the precipitation, 
also the wind field, humidity field, temperature field, radiation field, etc. for the specified storm



II. Perturbation of the atmospheric fields for the selected historical severe storm events.

II-2. Relative humidity optimization

The Relative Humidity (RH) perturbation method (RHP-IVT method; Toride et al., 2019) 

increases RH proportionally at those boundary sections where high IVT values are observed 

in order to maximize the storm event with physically realistic atmospheric fields.
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g: gravitational acceleration (m s-2), ത𝑞 is the mean layer specific humidity (kg kg-1),

ഥ𝑈: mean layer horizontal wind speed (m s-1) , 𝑝: the pressure (hPa)

Left: 
Example of moisture perturbation along the path of 
an atmospheric river: a)Integrated water vapor 
transport (IVT) in [kg/m-sec] at 0600 UTC 6 Feb 1996. 
The black box shows the outer modeling domain.

Toride et 
al. 2019



where RH0 is the original relative humidity (%) and 𝛽 is a multiplication factor 

to determine the increment of RH.

The above equation sets the upper threshold of RH to 97% in order to avoid 

quick saturation near the modeling boundary (Zhao et al., 1997).

II. Perturbation of the atmospheric fields for the selected historical severe storm events.

II-2. Relative humidity optimization

𝑅𝐻 = ቊ
min 𝛽RH0, 97 , 𝑖𝑓 RH0 < 97%
RH0, 𝑖𝑓 RH0 ≥ 97%

• Relative humidity (over areas where the IVT > 250 kg/m/s) is gradually increased, along 
with BC shifting until a maximum basin-average precipitation depth is reached.

• 100s of regional atmospheric numerical simulations are performed in order to reach the 
atmospheric conditions that maximize the basin-average precipitation depth.



II. Perturbation of the atmospheric fields for the selected 
historical severe storm events

II-1. Atmospheric boundary 
condition shifting

II-2. Relative humidity optimization

The reconstructed atmospheric fields for the 
selected historical severe storm events

III. Probable Maximum Precipitation (PMP) over a target watershed

&



Example of physically-based PMP/PMF 
estimation for 

Seven Southern California watersheds



Locations and elevation map of the target watersheds, consisting of the
Cosumnes (CRW), Mokelumne (MRW), Stanislaus (SRW), Tuolumne (TRW), 
Merced (MERW), Upper San Joaquin (SJRW), and Upper Kings (KRW).



Nested domains for the WRF simulation used with (a) CFSR reanalysis 

and ERA-20C data sets; and (b) 20CRv2c reanalysis data set.



Atmospheric River (AR) position based on IVT:
(a) before shifting; and (b) after atmospheric boundary condition
shifting.



Top 20 maximized 72-h precipitation (mm) depth events (identified by their dates) for 
historical reconstruction (blue), 1D maximized 72-h precipitation depth (red), and 2D
maximized 72-h precipitation depth (green): (a) Cosumnes (CRW) watershed; (b) Tuolumne
(TRW) watershed; and (c) Upper Kings (KRW) watershed

Trinh et al. (2021)



  Historical 1D shifting 2D shifting   

  precipitation precipitation precipitation   

  depth depth depth Shift to north Shift to east 

Watershed Event (mm) (mm) (mm) (°) (°) 

Tuolumne 1965A 253.80 450.16 460.00 −5 1 
 1963B 406.24 428.05 440.14 1 1 
 1997A 226.64 394.00 433.32 −5 1 
 1980A 298.72 327.38 426.68 −5 1 

 1943A 211.80 380.75 409.58 −5 −1 

Merced 1965A 214.81 478.16 490.13 −5 −1 
 1963B 402.18 411.91 411.91 1 0 
 1943A 191.70 378.77 407.93 −5 −1 
 1980A 254.42 291.40 403.95 −5 1 

 1986A 205.71 387.86 402.89 −2 −1 

Upper San Joaquin 1943A 224.51 521.43 560.79 −4 −1 
 1997A 190.05 494.14 494.14 −5 0 
 1965A 253.50 475.13 475.13 −5 0 
 1963B 442.29 434.20 465.32 1 1 

 1995A 381.82 407.61 429.89 1 1 

Upper Kings 1943A 225.72 678.20 745.59 −5 −1 
 1963B 551.20 568.44 585.70 0 1 
 1997A 209.51 608.97 608.97 −5 0 
 1965A 300.17 544.08 560.46 −5 1 

 1876A 197.02 490.49 525.53 −5 −1 

 

 Historical 

precipitation 

depth 

1D shifting 

precipitation 

depth 

2D shifting 

precipitation 

depth 

 

 
Shift to north 

 

 
Shift to east 

Watershed Event (mm) (mm) (mm) (°) (°) 

Cosumnes 1997A 183.74 317.05 366.53 −5 1 
 1963B 250.22 328.51 359.38 2 1 
 1965A 294.17 340.55 353.47 −2 −1 
 1886A 150.82 196.66 332.30 5 1 

 1888B 138.24 269.62 302.54 −5 1 

Mokelumne 1965A 299.59 428.88 428.88 −4 0 
 1997A 240.38 377.01 415.46 −5 1 
 1963B 339.35 396.00 397.43 2 1 
 1963A 160.77 391.32 391.32 −1 0 

 1986A 312.30 343.43 361.24 −1 −1 

Stanislaus 1965A 270.07 433.08 439.01 −5 −1 
 1997A 241.08 410.27 434.75 −5 1 
 1963B 366.97 402.76 403.31 2 1 
 1963A 180.49 394.64 394.64 −1 0 

 1943A 190.41 337.81 368.72 −5 −1 

 

Top five events after precipitation
maximization using ABCS (Atmospheric BC 
Shifting)

 Historical 

precipitation 

depth 

1D shifting 

precipitation 

depth 

2D shifting 

precipitation 

depth 

RHP-IVT 

precipitation 

depth 

 

 
Shift to north 

 

 
Shift to east 

 
Increase in 

RHP-IVT 

Watershed Event (mm) (mm) (mm) (mm) (°) (°) (%) 

Cosumnes 1965A 294.17 340.55 353.47 424.27 −1 −1 14 

1997A 183.74 317.05 366.53 416.60 −5 −1 18 

1886A 150.82 196.66 332.30 409.28 5 1 20 

1963B 250.22 328.51 359.38 387.87 2 1 12 

1986A 278.06 293.50 300.85 354.48 1 1 12 

Mokelumne 1886A 210.24 270.31 306.79 533.44 5 1 20 

1997A 240.38 377.01 415.46 500.77 −5 0 20 

1965A 299.59 428.88 425.99 479.52 −3 0 20 

1963B 339.35 396.00 397.43 452.76 2 1 12 

1885A 172.79 316.61 323.73 365.57 −2 0 14 

Stanislaus 1997A 241.08 410.27 434.75 517.49 −5 0 20 

1886A 227.42 284.55 303.74 513.10 5 1 20 

1965A 270.07 433.08 439.01 491.86 −5 −1 20 

1963B 366.97 402.76 403.31 436.79 2 1 12 

1986A 312.58 339.70 347.60 397.97 1 1 20 

Tuolumne 1886A 241.13 293.71 330.37 556.09 5 1 20 

1997A 226.64 394.00 433.32 524.71 −5 0 20 

1965A 253.80 450.16 460.00 491.51 −5 1 20 

1963B 406.24 428.05 440.14 477.85 2 1 12 

1980A 298.72 327.38 426.68 427.03 −5 1 20 

Merced 1886A 226.21 252.89 300.34 559.41 5 1 20 

1965A 214.81 478.16 490.13 546.11 −5 −1 20 

1997A 162.44 398.35 394.88 491.78 −5 0 20 

1963B 402.18 411.91 410.93 470.92 2 1 12 

1986A 205.71 387.86 402.89 441.69 1 0 16 

Upper San Joaquin 1886A 293.53 323.83 376.18 654.31 5 1 20 

1997A 190.05 494.14 488.82 607.81 −5 1 20 

1943A 224.51 521.43 560.79 560.91 −5 −1 10 

1965A 253.50 475.13 472.78 527.72 −5 −1 20 

1963B 442.29 434.20 465.32 494.33 −2 0 20 

Upper Kings 1943A 225.72 678.20 745.59 794.26 −5 −1 20 

1997A 209.51 608.97 567.79 723.37 −5 −1 20 

1886A 335.88 371.94 430.53 719.60 5 1 20 

1963B 551.20 568.44 585.70 640.23 −2 0 20 

1965A 300.17 544.08 560.46 626.04 −5 1 20 

 

Top five events after precipitation maximization
using RHP-IVT for each watershed



 

 

Atmospheric data for historical 

conditions 

(Spatial resolution: 3-km grids) 

Land Surface process 

Snow Model (WEHY-S) 

Atmospheric data for 

maximized conditions 

(Spatial resolution: 3-km grids) 
Flow process Hillslope 

and stream network 

routing (WEHY-H) 

Possible 

extreme 

runoff events 

on the target 

watersheds 

WEHY MODEL 

(Watershed Environmental 

Hydrology Model) 

Schematic description of the proposed methodology
to simulate maximum flood events

Historical and the maximized 
atmospheric fields

WEHY (hydrologic model 
including snow process)

PMF estimation



(a) WEHY-S conceptualization of temperature profile, water content profile, and 

energy balances within and around snowpack; (b) structural description of WEHY-H

(Kavvas et al., 2013)



Validation comparisons of the daily mean discharge by WEHY simulations and the corresponding observations at each 

watershed during 10 years (1997–2006): (a) Cosumnes River watershed; (b) Upper Kings River watershed; (c) Mokelumne 

River watershed; (d) Stanislaus River watershed; (e) Tuolumne River watershed; (f) San Joaquin River watershed; (g) Merced 

River watershed



Ranked events over KRW (top 10)

a. Ranked PMP events over KRW (tpp 10)

Event ID

Maximized 72-h 

precipitation (mm) Rank

Historical 72-h 

precipitation (mm)

1943A0500s0100wivt250_20 794.26 1 225.72

1943A0500s0100wivt250_10 745.83 2 225.72

1997A0500s0100wivt250_20 723.37 3 209.51

1886A0500n0100eivt250_20 719.59 4 335.88

1963B0200s0000eivt250_20 640.22 5 551.2

1965A0500s0100eivt250_20 626.03 6 300.17

1965A0500s0100wivt250_20 588.67 7 335.88

1963B0100n0100e 570.94 8 551.2

1963B0200n0100eivt250_12 542.89 9 551.2

1885A0200s0100eivt250_20 516.06 10 121.35

b. Ranked stream flow events with input from PMP events over KRW (top 10)

Event ID

Flow volumne

rank

Event flow 

peak (cm)

Historical flow peak 

(cm)

Event volumne 

(m^3 x 10^8)

1886A0500n0100eivt250_20 1 7035.7 2005.1 12.02

1943A0500s0100wivt250_20 2 4515.5 2058.2 4.96

1963B0200n0100eivt250_12 3 3176.8 2767.4 4.44

1943A0500s0100wivt250_100 4 3356.3 2058.2 4.4

1965A0500s0100eivt250_20 5 2836.8 1135.8 4.25

1963B0100n0100e 6 3038.6 2767.4 4.21

1963B0200s0000eivt250_20 7 2955.2 2767.4 4.16

1885A0200s0100eivt250_20 8 2505.5 583.43 3.8

1965A0500s0100wivt250_20 9 2461.9 1135.8 3.7

1995A0000n0100e 10 2256.2 1378.3 2.83

Kings River Watershed (KRW)

Kings River Watershed (KRW)

Ranked PMP and PMF events (top 10) at Upper Kings River Watershed (KRW)



Comparison of KRW basin-averaged temperature under historical and
maximized precipitation conditions for the 1943 and 1886 events



Comparison of KRW basin-averaged fractional snow cover for the historical 
and maximized precipitation conditions for the 1943 and 1886 events



Comparison of snow cover between the historical conditions and three 
different precipitation-temperature conditions during the 1886 event 
(ATMvar1886AcP, ATMvar1886AcPT, ATMvar1886AcT)



The maximization of extreme flood over the seven Southern California 
watersheds showed:
1) The flood event due to the maximum precipitation event does not 

necessarily result in the maximum flood;
2) The optimum combination of precipitation and temperature leads to 

the maximum flood event in snow-covered watersheds.



Physics-based numerical atmospheric-hydrologic modeling of the precipitation 
fields and floods as clusters of events has been addressed only recently (Hiraga
et al. 2021, 2022; Kavvas et al. 2021, 2023). This topic still needs substantial 
new research.



Tropical Cyclones/Typhoons

Tropical Cyclones (TCs) are intense atmospheric vortices that form over the warm tropical oceans” 

(Chan and Kepert (2010)).

Approximately 80 TCs form worldwide every year (De et al., 2004). 

Their life duration is very variable as TCs can last from 1 day to several weeks. 

Even if TCs have usually horizontal extents of several hundreds of kilometers, the strongest winds, 

precipitation, and deep convection are located in a region of about 100 km in radius. As a 

consequence, TCs can be considered as mesoscale systems (Holton and Hakim, 2013). 

More precisely, a calm eye with a diameter between 20 and 100 km and pressure deficit up to 10% 

of the ambient atmosphere is surrounded by a slantwise ring of deep convective clouds that extends 

through the whole troposphere. This ring is called the “eyewall”. 

The primary circulation of a TC consists of the cyclonic flow around the storm center while the 

weaker secondary circulation consists of “inflow concentrated in the boundary layer, upflow in the 

eyewall and spiral rainbands, and outflow in a thin layer beneath the tropopause” (Chan and Kepert, 

2010; Holton and Hakim, 2013). The secondary circulation is the energy source of the TC, and its 

working may be idealized as a Carnot machine (Cram et al., 2007; Emanuel, 1991) as illustrated in 

the following figure.



THREE POWERFUL HURRICANES, HURRICANE FRANCES, 
HURRICANE IVAN AND HURRICANE JEANNE HIT EASTERN USA 
WITHIN A SPAN 3.5 WEEKS DURING SEPTEMBER 2004









Best track positions for the eye of Hurricane Ivan for September 3–24, 2004 (reproduced from Stewart, 
2005). (Tropical Dep., Tropical Depression; Subtr. Storm, Subtropical Storm; Subtr. Dep., Subtropical 
depression; UTC, Universal Coordinated Time; mb, millibars).



Storm total rainfall depth map (inches) of Hurricane Jeanne





From “Hydrologic Effects of the 2004 Hurricane Season in NW Florida”, by R.J. Verdi, USGS Open-File Rept. 2005-1277



Hurricane Ivan
Hurricane Ivan developed over the tropical Atlantic Ocean, and on September 16. Ivan center came 
ashore as a category 3 hurricane just west of Gulf Shores, Alabama. Portions of the Interstate 10 bridge 
system across Pensacola, Florida were severely damaged due to the severe wave action on top of the 
10-15 foot storm surge. Storm surge occurred all the way to Tampa Bay, Florida about 500 miles from 
Ivan’s point of landfall.



On September 16, 2004, Hurricane Ivan made landfall on the Gulf Coast at the Alabama–Florida border as a category 3 hurricane. 
It then moved northeast into Alabama. As Hurricane Ivan moved northeast on the evening of September 16, winds decreased 
and it was classified as a tropical storm over central Alabama. 

As winds continued to decrease in the early morning of September 17, Ivan was classified as a tropical depression over northeast
Alabama. 

Ivan continued to move northeast across Tennessee and Virginia before it became extratropical over the Delmarva Peninsula on 
the afternoon of September 18. 

Floods with recurrence intervals of 500 years or greater occurred at seven USGS stream gages throughout eastern Ohio during 
the Period of Hurricanes Frances and Ivan during August 28–September 27. 

Fortunately, Hurricane Jeanne that followed Hurricane Frances and Hurricane Ivan, did not develop into a severe storm over most 
of Eastern USA, sparing the considerable destruction it could produce.



Nested domains used for the simulations of Hurricane Ivan. The small red area in western 
North Carolina is the target watershed



Target area used for the precipitation maximization by TC shifting. (a) The target area is shown in red within 
the model’s inner domain. (b) The target area corresponds to the drainage basin of the city of Asheville, N.C. 



Numerical Simulation of Hurricane Ivan:

Two-way nesting was used for the simulations, meaning that the different domains (outer, intermediate and inner) are run simultaneously and communicate

with each other. The top of the model was taken at 50 mbar, with a total of 38 vertical layers, and a time step of 3 minutes was used.

A simple 1-dimensional ocean mixed layer model was used following Pollard et al. (1972). The parameterization schemes used for the simulations of Hurricane

Ivan are given in the below table. This combination of the parameterization schemes comes from the configuration of the WRF model for the reconstruction of

Hurricane Ivan. Cumulus parameterization was used only in the outer and intermediate domains. The simulation start date is 09/06/2004 00:00 UTC. At that

time, Hurricane Ivan was located off the coast of French Guyana and Suriname.

Microphysics WRF Double Moment 6-class (WDM6)

Cumulus Parameterization (domains 1 and 2 only) New Simplified Arakawa-Schubert (SAS)

Planetary Boundary Layer Mellor-Yamada-Janvic (MYJ)

Longwave Radiation Rapid Radiative Transfer Model (RRTM)

Shortwave Radiation Dudhia

Land Surface Unified Noah Land Surface Model

Surface Layer Eta Similarity Scheme

Parameterization schemes used for the simulations of Hurricane Ivan



(a) Hurricane Ivan observed accumulated precipitation field in the inner-domain (from 09/14 00:00 UTC to 09/19 00:00 
UTC). (b) Inner-domain WRF-simulated accumulated precipitation field (from 09/14 00:00 UTC to 09/19 00:00 UTC). (c) 
Arrow field: time-averaged (from 09/14 00:00 UTC to 09/19 00:00 UTC) integrated vapor transport (kg m-1 s-1). Color 
plot: divergence of the time-averaged integrated vapor transport field (mm).



Description of the Tropical Cyclone/Hurricane/Typhoon Storm Transposition (Shifting) method

Initial and boundary conditions used for dynamical downscaling with a Regional Atmospheric Model (RAM) are usually

obtained from the outputs of a general circulation model (GCM) or Reanalysis Data. This section presents a method to shift

the location of a TC in the initial conditions. The objective of this transposition is to modify the track of the storm so that its

precipitation field moves over a specified target area.

The transposition of the TC in the initial conditions is performed by executing the following procedure:

1. Identify the location (xc,yc) of the center of low pressure;

2. Identify the radius R of the cyclone;

3. Remove the TC from the background atmospheric fields by cutting off the inside of the circle of center (xc,yc) and of radius

R from the original atmospheric fields;

4. Interpolate the background fields to the inside of the circle;

5. Compute the perturbation fields by subtracting the background fields obtained in step 4 from the original fields. The

perturbation fields are zero everywhere except inside the circle;

6. Shift the perturbation fields;

7. Add the shifted perturbation fields to the corresponding background fields obtained in step 4.



Application of the transposition (shifting) procedure to the initial 
surface zonal wind velocity (m.s-1) in Hurricane Ivan.



Hurricane Ivan was transposed in a direction orthogonal to its direction of propagation at the simulation start date (below

figure). The transposition exercise was first performed for 29 amounts of shift (including zero shift), from 1.67 degree west

and 7.18 degree south to 1.67 degree east and 7.18 degree north, which corresponds to the black dots in below figure. The

WRF model was run for each of these amounts of shift, and the maximum 72-hour (3-day) accumulated precipitation over

the target watershed, which corresponds to the 72-h time window that contains the largest basin average precipitation,

was calculated for every simulation. Results for this first step are presented in the second figure below. Note that the

shifting results are represented by plotting them only against the West-East component of the shift that occurs along the

line of black dots shown in the below figure.



The color plot shows the mean sea level pressure field (mbar) on 09/06/2014 00:00 UTC (from CFSR) for zero shift. The 
green point gives the location of the center of low pressure in the original TC (zero shift). The black points give the location
of the center of low pressure after shifting. The black arrow indicates the directon of propagation of Hurricane Ivan. 



72-h basin average precipitation as a function of the West-East component of the shift. (a) Results for the 29 shifts in degrees first considered (above figure). 

(b) Results after the first refinement. (c) Results after the second refinement. The green square gives the 72-h basin average precipitation in the case of no shift. 

The yellow diamonds show the refinement performed around the local maxima. The red diamond in (c)  indicates the maximum 72-h basin average precipitation.



Above figure shows that Hurricane Ivan responds nonlinearly to the transposition of its initial conditions. Indeed the location of the

precipitation field does not change homogeneously as the amount of shift is increased from 1.67 degrees west and 7.18 degrees south to 1.67

degrees east and 7.18 degrees north. For example, the 72-h accumulated precipitation field corresponding to an amount of shift of 1.07

degrees west and 4.61 degrees south (third plot on Row 2 in above figure) is located east of the 72-h accumulated percipitation field

corresponding to an amount of shift of 1.01 degrees west and 4.36 degrees south (fourth plot on Row 2 in above figure). This behavior

explains the presence of multiple peaks in the graphs of the 72-h basin average precipitation as a function of the zonal component of the shift

presented in the figure before the above figure.

Given 1) the strong nonlinearity involved in the dynamics of a TC, 2) the fact that we used no nudging and data assimilation, and 3) the early

simulation start date (about ten days before the time of landfall), it is not expected that the numerical model manages to reproduce

accurately the track of the TC, including the time and location of landfall. In order to place the simulated precipitation field in the right

location, it is necessary to use a later simulation start date, as was done for the configuration of the WRF model for which the simulation start

date was only two days before the time of landfall.



72-h accumulated precipitation field as a function of the amount of shift. The first plot (top-left) corresponds to the most 
westerly and southerly shift (1.67 degrees west and 7.18 degrees south) while the last plot (bottom-right) corresponds to the 
most easterly and northerly shift (1.67 degrees east and 7.18 degrees north). The maximum 72-h basin average precipitation is 
obtained for the 8th plot (fourth plot on Row 2).



(a) 72-h accumulated precipitation (mm) field (from 09/16 08:00 UTC until 09/19 08:00 UTC) for the simulation which maximized the 72-h basin 
average precipitation. (b) 7-day accumulated precipitation field (from 09/14 00:00 UTC until 09/21 00:00 UTC) for the simulation which 
maximized the 72-h basin average precipitation. (c) Observed 7-day accumulated precipitation field (from 09/14 00:00 UTC until 09/21 00:00 
UTC).

It is observed that the maximized precipitation field is overall significantly more intense than the observed field, which shows that the physically 
based transposition method does not result in a simple transposition of the storm’s precipitation field, as it is often assumed in the traditional 
PMP approaches. While the maximized 7-day precipitation over the  Asheville watershed is around 200 mm, the observed 7-day precipitation due 
to Hurricane Ivan is in the 80 – 190 mm range. In about half of the watershed area the observed 7-day precipitation is less than 130 mm.



PRECIPITATION MAXIMIZATION OF HURRICANE FRANCES OVER EASTERN USA



(a) 72-h (from 09/06/2004 23:00 UTC until 09/09/2004 23:00 UTC) accumulated precipitation (mm) field in Hurricane Frances for the 
simulation which maximized the 72-h basin average precipitation. (b) 7-day (from 09/04/2004 00:00 UTC until 09/11/2004 00:00 UTC) 
accumulated precipitation field in Hurricane Frances for the simulation which maximized the 72-h basin average precipitation. (c) Observed 
7-day (from 09/04/2004 00:00 UTC until 09/11/2004 00:00 UTC) accumulated precipitation field in Hurricane Frances.

While the maximized 7-day precipitation over Asheville watershed is around 260 mm, the observed 7-day precipitation over Asheville 
watershed due to Hurricane Frances is in the 74-192 mm range. Half of the watershed area during the observed Hurricane Frances receives less 
than 118 mm 7-day precipitation. 



Hurricanes Frances (9/4 – 9/11/2004), Ivan (9/13 – 9/28/2004) and Jeanne (9/25 –
9/30/2004) were clustered in time within a 3-weeks period, following each other 
sequentially. 

Such a historical occurrence of three hurricanes in a sequence within a time window of 3 
weeks is not addressed in any of the conventional extreme precipitation estimation 
approaches, nor in the conventional extreme flood estimation approaches.

As may be seen from their maximized precipitation states over the Asheville watershed, if 
these hurricanes would hit the watershed in their maximized forms, they would produce 
tremendous flooding and resulting disaster.

The reported study was confined only to the maximization of precipitation fields. As such, 
the resulting Probable Maximum Flood could not be estimated.



Estimation of the Return Periods of Extreme Floods under Changing Climate

One approach to the estimation of extreme flood return periods under the evolving hydro-climate of the 21st

century, is by means of the integrated atmospheric-hydrologic numerical model simulations of the extreme 
floods, based on an ensemble of GCM hydro-climate projections that will cover a range of possible emission 
scenarios (Kavvas et al. 2017; Trinh et al. 2016)



Trinh et al. (2016)



Trinh et al. (2016)



Comparison of the flood frequency curve at Yolo station 

using observed flows (1903-2012), 

with the curve estimated by the WEHY model-simulated flows based on the 

downscaled GCM historical control run simulations
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Annual maximum model-simulated streamflows

during 21st century at Yolo gauging station
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Relative frequency histograms of annual maximum flows 

separated into 45-year increments for all flow projections 

during 21st century at Yolo gauging station
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Evolution of the annual maximum flow as function of  return periods throughout 

the 21st century for all flow projections at Yolo gauging station
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Comparison between Fitted LP3 and GEV distributions that were calibrated by historical observations, against hydroclimate

simulations-based distributions 

during two periods of future projection
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Annual maximum flow as function of  return period throughout the 21st century for all flow projections at 

Yolo gauging station
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