

土木学会 エネルギー委員会主催 シンポジウム

放射性廃棄物処分技術の最新動向に関する総合シンポジウム

Comprehensive Symposium on Latest Trends on Radioactive Waste Disposal Technology

(2022年5月17日(火)、10:00~17:00; 土木学会講堂)

主催: 土木学会 エネルギー委員会

(担当: 低レベル放射性廃棄物・汚染廃棄物対策に関する研究小委員会)

プログラム

- 10:00~10:05 開会挨拶
- 10:05~12:00【講演-1】
- 1)「低レベル放射性廃棄物埋設事業の取組み状況」 (佐々木泰:日本原燃)
- 2)「地下空洞型処分施設に係る技術開発について」(藤原啓司:原子力環境整備促進・資金管理センター)
- 3)「研究施設等廃棄物処分の基本的な考え方と処分技術の開発状況」(坂井章浩:日本原子力研究開発機構) 12:00~13:00 【休憩(昼食)】
- 13:00~14:50【講演-2】
- 4)「TRU廃棄物の地層処分におけるガス発生の影響に関する研究開発」

(藤井直樹:原子力環境整備促進・資金管理センター)

- 5)「放射性廃棄物地層処分における長期の地下水動態評価に係る地下水年代測定技術の最近の進展」 (中田弘太郎:電力中央研究所)
- 6) "Numerical assessment of a hybrid approach for simulating three-dimensional flow and advective transport in fractured rocks" (Prof. Chuen-Fa Ni, National Central University of Taiwan) (倪春發:台湾国立中央大学)
 14:50~15:00【休憩(10分)】
- 15:00~16:55【講演-3】
- 7)NUMOにおける地質環境のモデル化技術の高度化に向けた取組み状況

(尾上博則:原子力発電環境整備機構)

8)「幌延地下研における立坑掘削時の水圧応答と亀裂連結性の変化等に関する研究開発」

(尾崎裕介:日本原子力研究開発機構):

9)「亀裂性媒体の地下水流動・核種移行解析における不確実性」

(内田雅大: Fracture Flow Solutions代表/元、日本原子力研究開発機構)

16:55~17:00【閉会挨拶】

Comprehensive Symposium on Latest Trends on Radioactive Waste Disposal Technology

Organized by the Energy Committee of the Japan Society of Civil Engineers (JSCE)

May 17th (Tue.) 、10:00~17:00; JSCE Auditorium)

Organizer: Energy Committee , JSCE (In charge: Research Subcommittee on Countermeasures for Low-Level Radioactive Waste and Contaminated Waste)

Program of Symposium

10:00~10:05 開会挨拶

- 10:05~12:00 【Lecture Group-1】
- 1) "Current status of LLW buried disposal business and efforts to advance technology by JNFL"
- 2) "RWMC's R&D for intermediate depth disposal"

(Dr. Tai Sasaki : JNFL) (Mr. Hiroshi Fujihara: RWMC)

3) "Basic concept of disposal facility and development status of disposal technology for wastes from research facilities, etc."
 (Dr. Akihiro Sakai : JAEA)

12:00~13:00 [Break]

- 13:00~14:50 [Lecture Group-2]
- 4) "R&D on influences of gas generation on geological disposal of TRU waste" (Mr. Naoki Fujii: RWMC)
- 5) "Recent developments in groundwater dating technology for long-term groundwater dynamics evaluation in geological disposal of radioactive waste" (Dr. Kotaro Nakata : CRIEPI)
- 6) "Numerical assessment of a hybrid approach for simulating three-dimensional flow and advective transport in fractured rocks" (Prof. Chuen-Fa Ni, National Central University of Taiwan)

 $14:50 \sim 15:00$ [Short break]

15:00 \sim 16:55 **[** Lecture Group-3 **]**

7) "Current status of NUMO's efforts to advance geological environment modeling technology"

(Dr. Hironori Onoe:NUMO)

- 8) "R&D on changes in hydraulic response, crack connectivity during shaft excavation at Horonobe URL" (Dr. Yusuke Ozaki: JAEA):
- 9) "Uncertainty in flow and mass transport modelling of fractured media"

(Dr. Masahiro Uchida: Fracture Flow Solutions / Former, JAEA)

16:55~17:00 【 Closing remarks 】

Comprehensive Symposium and Workshops on The Latest Trends on Radioactive Waste Disposal Technology : Japan Society of Civil Engineers"

Current status of LLW buried disposal business and efforts to advance technology

May 17, 2022

Tai Sasaki

Japan Nuclear Fuel Limited

Preface

- JNFL's Low-Level Radioactive Waste Burial Center has been in operation since 1992, and the No. 2 Waste Burial Facility since 2000.
- > Approximately 330,000 drums of waste have already been buried.
- In August 2018, the company applied for a business change permit for the expansion of the No. 3 waste burial facility and received the permit on July 21, 2021.
- The review is based on the "Regulations Concerning Standards for Location, Structure and Equipment of Class II Landfill Facilities enacted in 2013 (partially amended in December 2019) by NRA(Nuclear Regulation Authority).
- This section provides an overview of the facility and its design.

Progress of LLW disposal business

•	1984	July	FEPC(The Federation of Electric Power Companies of Japan) chairman asked the
			cycle facilities.
•	1985	Apr.	The Governor and the Mayor accepted the FEPC's proposal.
•	1985	July	Establishment of JNFI (the former company of JNFL)
•	1988	Apr.	Application for business permission (for construction & operation of No.1 disposal facility)
•	1990	Nov.	Its approval & start-up of construction of the Rokkasho LLW Disposal Center
•	1992	July	Merger between JNFS and JNFI (precursors of JNFL), Establishment of JNFL
•	1992	Dec.	Start-up of The Rokkasho LLW Disposal Center (No.1 disposal facility)
•	1997	Jan.	Application for the change of business (for construction & operation of No.2 disposal facility)
•	2000	Oct.	Its approval & start-up of the No.2 disposal facility
•	2013	Dec.	NRA establish "Standards for the Location, Structure, and Equipment of
			Category 2 Waste Disposal Facility"
			NRA :The new regulatory body, reorganized after the Fukushima-Daiichi Accident
•	2018	Aug.	Application for the change of business
			(for construction & operation of No.3 disposal facility)
•	2021	July	Its approval & start-up of the No.3 disposal facility

Classification of radioactive waste

Type of waste				Example of waste	Disposal method	
es		Was leve radi	ste below clearance I(treatable as non- oactive material)	Most waste from decommissioning NPPs, etc.	Recycling/disposal as non- radioactive material	
ycle Faciliti	cle Facilitie om NPPs	TW	Very low-level radioactive waste (L3)	Concrete, metal, etc.	Trench disposal Near-surface disposal without engineered barriers	
ar Fuel C	Waste fi		Relatively low-level radioactive waste (L2)	Solidified liquid waste, spent equipment, consumables, etc.	Disposal at concrete vault Near-surface disposal with engineered barriers	
om Nucle				Relatively high – level radioactive waste (L1)	Control rod, Core- internals, Solidified liquid waste, etc.	Intermediate depth (over70m) disposal with engineered barriers
Waste fr		Relatively much volume of long half- lifetime nuclides	Solidified fuel assembly parts, etc.	Geological disposal (over 300m)		
	High-level radioactive waste		n-level radioactive te	Vitrified waste		

Rokkasho LLW Disposal Center

Waste

Facility	No.1	No.1、No	0.2、No.3		
Type of	Homogeneously-	Solidified dry active waste			
waste	solidified waste	Encapsulated waste package	Melting-solidified waste package		
Image of waste package					
Target waste	Condensed liqui d spent resin, etc.	Dry active waste	Dry active waste		
Solidified material	Cement, asphalt or plastic	Mortar	Mortar		

Outline of Disposal Facility

No.1

Disposal Facility (Rokkasho No.1)

Cover Soil

Drainage monitoring system

The waste packages should be installed in such a way that water entering the burial facility can be drained and collected during the period between the start of acceptance of the radioactive waste to be buried and the completion of the soil covering.

Operation and Control Stage

	Completion of soil covering	7 Start of decommissioning Phase \bigtriangledown			
Phase	Start of acceptance~ Completion of soil covering	Completion of soil covering~decommissioning Phase			
time	27 years after the start of burial (In case of No. 3)	300 years after completion of covering			
Conce pt	Prevention of leakage by burial facilities, etc.	Migration control by burial facilities and surrounding soil, etc.			
. Management details	 Establishment of burial preservation area, installation of tags at the burial site / Patrol and inspection of the burial site, repair of buried facilities and soil cover, etc. Restoration of buried facilities and soil cover, etc. / Environmental monitoring Periodic evaluation, etc., and monitoring of groundwater conditions related to the functions of engineered and natural barriers necessary for such evaluation, etc. Monitoring of groundwater conditions related to the functions and patural barriers necessary for periodic evaluation of engineered barriers and patural barriers necessary for setc. 				
	 Establishment of a perimeter monitoring zone Monitoring of radiation dose and concentration of radioactive materials in groundwater in the vicinity of the boundary of the monitoring area Prohibit the use of stream water, restrict excavation, and prohibit habitation. 				
	 Drainage by drainage/monitoring facilities Monitoring of no leakage (drainage/monitoring facilities) 	 Monitoring of leakage (near buried site, near site boundary) 			

<Remarks> O: functions are expected, -: functions are not expected, (): elements providing functions

Design of Containment

	I	Legend	Expected safety functions				
Elements	Part	Water movement	Prevention of water infiltration		Prevention of radionuclide leakage		
Reinforced concrete		+	0	Proventing water infiltration	0		
Internal waterproof (bottom)		+	0	through vault	0	Preventing leakage through vault	
Porous concrete	\boxtimes	+	O Draining infiltrated water		0	Collecting contaminated water	
Filing mortar O		Dravanting contact between wests	_				
Internal waterproof (top, side)		1	0	and water	_		
Conceptual diagram			Boundary to prevent water infiltration Waste			Boundary to prevent radionuclide leakage	

Design Concept of Migration Control Functions

Dart	Expected function				
Fait	Low-permeability*1	Adsorption *2			
Upper cover soil	-	0			
Lower cover soil	0	-			
Low- permeability cover soil	0	0			
Rock	0	0			
Cementitious materials	_	0			

*1 : Low permeability reduces groundwater inflow to buried facilities

*2 : Delays the migration of radioactive materials due to sorption properties

Mortar filling test

Mock-up facility

						Unit we	ight (}	kg∕m³)		
W/B (%)	S/B	Air (%)	wate r W	Bonding material B			Fine aggregate S		Non-	
				Modera te- heat cement	Blast furnac e slag Micro powder	expans ion	sand	Land sand	separable mixing agents in water	Super AE water reducer SP8HVM
					458		1,4	54		
55.0	3.17	5.0	252	131	307	20	872	582	1.1	4.58 B ≍1.0 %
				Mor	tar Con	nocitio	n			

monal composition

Mortar Filling Test

Safety assessment flow after control period

Conceptual diagram of changes in barrier performance over time in radiation dose

assessment

Selection of Natural Phenomena

The phenomena that may affect the condition of waste disposal sites and living environment are comprehensively selected with reference to national and international standards and documents

Natural phenomena that should be considered in setting the long-term conditions were selected (15 events).

Event of origin	Long-term event	Item
Event caused by plate motion	Volcanic and igneous activity	(1) Volcanic effects (pyroclastic density flow, falling pyroclastic material)
	Earthquake/faulting activity	(2) Earthquakes, (3) Liquefaction , (4) Fault activities (ground deformation)
	Uplift/subsidence movement	(5) Uplift/sedimentation
Climate change-induc	ed events	(6) sea level change, (7) temperature, (8) precipitation, (9) Amount of irrigation
Events caused by both change	h plate motion and climate	(10) Erosion, (11) Groundwater level, (12) Evapotranspiration, (13) River discharge
Other phenomena	_	(14)Biological events, (15)Changes in permeability

Events that have a direct impact on dose assessment parameters after considering the above events individually

⇒ ①Temperature and precipitation changes, ②groundwater flow,
 ③evapotranspiration and ④surface water flow

Fault

Topographic Change

Classification of terraces

Stability and Buffering Capacity of the Geosphere for Long-term Isolation of Radioactive Waste , NEA 2009

Uplift rate during last 400,000 years

Similarities of along and across river cross sections for research area

Bird's eye view of topographic model

(present)

(Cooling climate case: after about 10,000 years)

(warming climate case)

(Cooling climate case: after about 60,000 years)

Stability and Buffering Capacity of the Geosphere for Long-term Isolation of Radioactive Waste , NEA 2009

State Setting (Impact Event Analysis)

Extraction results from THMC matrix analysis (1/2)

Term	Major impact event	Migration Control Functions	lmp act	Impact Assessment Results
Heat	Decay heat	Low permeability Sorption	—	The amount of radioactive materials contained in the waste package to be buried is small, and the temperature is sufficiently lower than the temperature at which thermal transformation of each component occurs.
	Heat of hydration	Low permeability Sorption	—	The sorption of cementitious materials is not considered as an impact event, since the sorption is expected to occur after hydration.
	Temperature change	Low permeability Sorption	—	The temperature does not increase to the extent that thermal alteration occurs. The buried facilities after the completion of soil lining will be installed at a depth of about 20 m below the ground surface, which means that the temperature will not increase to the extent that thermal alteration will occur.
hydraulic	Groundwater Flow	Low permeability	0	Groundwater flow velocities in the vicinity of the waste burial site (bedrock and Quaternary layers) are sufficiently low to have an impermeable However, it is considered in "C (Chemistry) Reaction with groundwater".
		Sorption	0	The groundwater flow velocity in the vicinity of the waste burial site (bedrock and Quaternary layers) is sufficiently low to have no direct effect on the impermeable However, it is considered in "C (Chemistry) Reaction with groundwater".

State Setting (Impact Event Analysis)

Extraction results from THMC matrix analysis (2/2)					
Term	Major impact event	Migration Control Functions	Imp act	Impact Assessment Results	
Mecha nics	Expansion(metal corrosion, effect of salt)	Low permeability	0	Areas of altered permeability due to reduction in thickness and displacement may occur at the corners and other areas of impermeable soil cover.	
	Gas generation	Low permeability	—	The results of permeability and permeability tests showed that there was almost no change in hydraulic conductivity of soil before and after gas breakthrough.	
	Swelling pressure of bentonite	Low permeability	—	Swelling pressure of bentonite is not considered as an impact event because it is small compared to the surrounding ground pressure.	
	Seismic	Low permeability	—	Mechanical deformation is very small compared to deformation of buried facilities due to metal corrosion. The design of the site is such that liquefaction is not likely to occur easily.	
Chemi stry	Reaction with groundwater	Low permeability Sorption	0	Dissolution of montmorillonite and calcium silicate hydrate and formation of secondary minerals may affect the low permeability of the impermeable soil cover, as well as the sorption of each barrier.	
	Organic matter effect	Sorption	0	Cellulose decomposes under alkaline conditions and forms isosaccharinic acid, which forms complexes with radioactive materials. isosaccharinic acid, may affect the sorption properties of each component.	
	Salt Effects	Low permeability Sorption	0	Dissolution of soluble salts in homogeneous and homogenous solidified products into groundwater causes changes in porewater quality. changes in the porewater quality. In addition, the reaction of each component with salt-dissolved porewater may lead to mineral dissolution and secondary mineral formation, resulting in alteration of the components.	
	Colloidal effects	Sorption	—	The pore water of buried facilities is cement equilibrium water and is not an environment in which colloids can be dispersed stably.	
	Microbial Effects	Sorption	0	Organic matter is mineralized by microorganisms in bedrock , and this should be taken into account when setting sorption potential.	
	pyroclastic precipitate	Low permeability Sorption	—	The upper layer of the soil cover is thick enough to limit the extent of chemical influence (buffering effect) to the surface layer.	

Evaluate the effect of soil cover on hydraulic conductivity using the DEM. \rightarrow Based on the results of the evaluation, it is assumed that the hydraulic conductivity of the soil cover will not change, but the thickness of the soil cover will change in the mechanical impact.

Pheno mena	Type of waste	facility	Concept of phenomena
exnans	Solidified	No.2,No,3	Assume that expansion occurs due to the metals corrode
ion	dry active waste	No.1	Assume that expansion occurs due to the reaction of soluble salts with cementitious materials
sink	Homogene ously- solidified waste	No.1	Assume that the leaching of soluble salt will create cavities in buried facilities and cause the cover to cave in

Mechanical Effects of Soil Cover

O Approach to Setting Conditions for Assessment of Condition Changes (Mechanical Effects) after 1,000 Years

Item	Settir	ıg	Concept of setting
Metal corrosio n rate	Less-likely scenario	Assume all metals corrode instantly	Uncertainties related to localized corrosion (pitting corrosion), dissimilar metal contact corrosion, and thang es in environmental conditions should be considered. Duing the evaluation period of condition thange after the start of decommissioning (after 1,000 years), it is assumed that the entire amount of corrosion, regardless of the corrosion type, will be instantaneous. The total amount of corrosion is assumed to be instantaneous, regardless of the corrosion type.
	Likely scenario	0.1µm/y	consider measurement errors inherent in corrosion rate measurement methods
	Less-likely scenario	4 times	The set metal types and amorphous hydroxides were set to account for variations in environmental conditions. The contamination rates of the other metal types were evaluated in a range of 0 to 50 %, and the corrosion expansion factor was less than 4 times for all of them.
Expansio n factor	Likely scenario	3 times	The corrosion product of the representative metal type (iron) was set as Fe3O4 (magnetite), and the mixing ratio of other metal types to be considered was set in the range of 0wt% to 50wt%. The results of the evaluation of the corrosion expansion ratio of the mixed metals were as follows. The results showed that the corrosion expansion factor was less than 3 times in all cases.

Density change in cover soil due to facility expansion

vertical : 2.0m

Differential Elemental Method

horizontal: 5.0m、vertical: 1.0m

	Deformation	
location	Fig 1 vertical :2.0m	Fig 2 horizontal :5.0m、 vertical :1.0m
	Density increase (%)*1	
Circle1	-0.8	0.3
Circle2	-2.0	1.7
Circle3	12.3	12.3
Circle4	7.3	16.3
Circle5	21.8	30.9
Circle6	-0.9	-1.9
Circle7	-4.0	-7.1
Circle8	0.9	0.0
Circle9	-4.2	5.1
Circle10	7.8	11.5

*1 :negative values indicate a decrease in density

Density change in cover soil due to facility sinking

Analytical result

Density change

測定位置	Density increase (%)*1
Left_1	2.4
Left_2	-2.1
Left_3	-7.7
Left_4	-8.2
Left_5	-4.0
Left_6	-5.1
Left_7	-5.2
Center_1	8.6
Center_2	1.5
Center_3	2.6
Center_4	2.2
Right_1	6.7
Right_2	-4.4
Right_3	-2.6
Right_4	-5.0
Right_5	-5.5
Right_6	-1.5
Right_7	0.4

 $\ast1\ast1$:negative values indicate a decrease

Mechanical Effects of Soil Cover

○ Evaluation of condition change (mechanical effects) of the soil cover (example of waste burial site No. 3)

No opening occurs at the corner (1m or more remains)

Chemical Effects of Soil Cover

- The composition of groundwater changes due to contact with cementitious materials or soluble salts contained in the waste material buried in the No. 1 waste burial site.
- Highly alkaline groundwater can dissolve or alter the montmorillonite in the bentonite material and, gradually reducing the low permeability function.
- The migration and chemical reactions to impermeable soil cover were evaluated using the PHREEQC-TRANS (coupled chemical reactant migration analysis code).
- Transition of hydraulic conductivity of the impermeable soil lining due to chemical alteration was evaluated.

Concentration boundary condition

on cementitious material side

Fixed at zero flux

Concentration boundary conditions on the bedrock side : Fixed by groundwater composition

> ↓ 5m ↓ 2m ↓ 32m Lower cover soil & Rock Low-permeability cover soil Cementitious materials

No.1

Concentration boundary conditions on the bedrock side : Fixed by groundwater composition Concentration boundary condition on cementitious material side Fixed at zero flux

Model & boundary conditions

Chemical Effects of Soil Cover

- Permeability coefficients for dose assessment of impermeable soil cover considering long-term chemical effects are set based on the following values after 1,000 years.
- The lower soil cover placed around the impermeable soil cover should not change the hydraulic conductivity due to chemical effects, because the montmorillonite in the impermeable soil cover will remain even after chemical effects.

Condition setting of permeability of soil cover (mechanical and chemical influences)

The hydraulic conductivity of the entire soil cover used to calculate the flow rate through the facility is calculated assuming that the soil cover on top of the buried facility is subjected to mechanical and chemical influences.

(No.3, Likely scenario)
Groundwater Flow Analysis

Setting of living environment conditions (setting of individuals to be evaluated)

- The individuals shall be those who live in and around the site or in the general lifestyle currently recognized in Japan, and shall be adults who represent the population that is exposed to relatively high exposure.
- In the likely scenario, the individuals to be evaluated are assumed to be residents.
- In the less-likely scenario, the individuals to be evaluated all of the following.

target group	Lifestyle
Fishermen	The target population is people who live in the landfill site, and it is assumed that marine products to which radioactive materials are transferred are consumed at home in a conservative manner. Other products are assumed to be consumed from general marketed foods.
Agricultural workers	It is assumed that agricultural products to which radioactive materials are transferred will be consumed by the residents of the waste burial sites for their own consumption on a conservative basis, and that other food products distributed in general markets will be consumed by the residents. In the case of water use, rice cultivation using stream water containing radioactive materials for irrigation is assumed.
Livestock Industry Workers	The target population is the people who live in the waste burial sites, and it is assumed that livestock products to which radioactive materials are transferred are consumed by them for their own consumption in a conservative manner. However, exposure due to ingestion of livestock products to which radioactive materials are transferred is not assumed.
Construction workers	The target population is assumed to be people who live in the waste burial ground and consume food products distributed in the general market. It is also assumed that construction workers will be working on the contaminated land.
resident	The target population is assumed to consume agricultural products produced in home gardens and food products distributed to the market.

Safety Assessment Results

Safety Assessment Results No.3 facility (Likely scenario : inhabitants)

Safety	Assessment	Results
--------	------------	---------

dose		No.1 (µSv/y)	No.2 (µSv/y)	No.3 (µSv/y)	splendid (µSv/y)	Criteria
Less-likely scenario	fisherman ^{*1}	3.3	4.0	3.8	11	300µSv/y
Likely scenario	inhabitants	0.20	0.18	0.088	0.46	10µSv/y
Human intrusion	Construction worker	5.9	5.8	2.5		1000µSv/y
	inhabitants	42	31	16		(1mSv/y)

*1 : individuals to be evaluated for the highest dose

Shielding

Assessment results of radiation exposure to the public

	No.1+No.2	+No3 (μSv/y)
	~ Completion of soil covering	Completion of soil covering \sim
external exposure	23	1.0×10 ⁻⁴ **

% result of Lower cover soil surface

地下空洞型処分施設に係る技術開発について RWMC's R&D for Intermediate depth disposal

公益財団法人原子力環境整備促進・資金管理センター 藤原 啓司 Hiroshi FUJIHARA

Radioactive Waste Management Funding and Research Center

Auditorium, JSCE Headquarters May 17, 2022

1. 中深度処分とは

Concept of Intermediate Depth Disposal

2. 原環センターの中深度処分関連研究の目的

Objectives of RWMC's R&D activities

3. 取組の概要(経済産業省からの受託研究)

Broad outlines of RWMC's Past and Current R&D (Contracted Research from METI)

3.1 地下空洞型処分施設性能確証及び閉鎖技術確証試験

The Construction Test of a Disposal Facility in the Test Cavern

3.2 地下空洞型処分施設機能確認試験

Study on Monitoring Methods for Confirming the Condition of Disposal Facility

3.3 地下空洞型処分調查技術高度化開発

Study on Advanced Methods for Evaluating Underground Environment and Designing Disposal Facility

1. 中深度処分とは - 廃棄体・処分容器

- 原子炉施設や再処理施設等の運転と解体から発生する「低レベル放射性廃棄物」のう ち、「放射能レベルが比較的高い廃棄物」(L1廃棄物)
 - ⇒廃棄物の収納効率を良くするため、大型角型容器の採用が検討されている

3

1. 中深度処分とは - 処分施設の概念・特徴

- 中深度処分は、住居建設などの一般的な地下利用のほか、高層建築物の建設、地下鉄、上下水道、共同溝などの利用を想定しても十分に余裕のある深度(法令で地表から深さ70m以上の地下)に処分する方法となっている。
- 放射性物質の移行は、「廃棄物・廃棄体」、「天然バリア」、「人エバリア」により長期に わたり抑制する。

1. 中深度処分とは -事業の流れ

- ●事業者による事業の継続性、廃棄物に含まれる放射性核種の減衰の観点から、既往のピット処分を参考に、300年~400年程度の能動的管理が想定されている
- 処分施設の特徴を踏まえ、坑道埋戻し・坑口閉塞等の措置(閉鎖措置)段階がある
- 公衆と生活環境防護の観点から、規制当局が、事業開始前、埋設施設を含む立体的な区域を掘削制限区域として指定する

2. 原環センターの中深度処分関連研究の位置付け

● 廃炉等に伴って生じる廃棄物の処分については、低レベル放射性廃棄物も含め、発生者責任の原則の下、原子力事業者等が処分場確保に向けた取組を着実に進めることを基本としつつ、処分の円滑な実現に向け、国として、必要な研究開発を推進するなど、安全確保のための取組を促進する。(第6次エネルギー基本計画,令和3年10月)

経済産業省

中深度処分について、その円滑な実施に向けた基盤的な技術開発を実施する。

- ●地下空洞型処分施設性能確証及び閉鎖技術確証試験(2005~2014年度)
- ●地下空洞型処分施設機能確認試験(2015~2019年度)
- ●地下空洞型処分調査技術高度化開発(2020年度~)

成果の公表

https://www.enecho.meti.go.jp/category/electricity_and_gas/ nuclear/rw/library/library06.html

公募研究

原環センター

RWMC

1976年設立以来、我が国唯一の放射性廃棄物に特化した中立の調査研究機関として、学界、 産業界の知見も活用して、幅広い調査研究を実施している。

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(1/9)

- 目 的: 実際の地下環境条件において中深度処分で想定されている実規模大の模擬施設を構築し、 施工技術や施工品質を確認する。あわせて、模擬施設及び周辺岩盤の挙動計測等を行い、 その健全性を確保する。
- 実施場所: 日本原燃㈱の試験空洞内 他

調査坑概念図 試験空洞:幅約18m、高さ約16m、長さ約 70mの大きさで、空洞底部の標高が約-90m

(出典)日本原燃㈱:低レベル放射性廃棄物の次 期埋設に関する本格調査結果について(2006)

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(2/9)

② 底部低透水層の施工

③底部セメント系材料(低拡散層・ピット)の施工

④ 側部セメント系材料(ピット)の施工

⑤セメント系材料(手前部ピット·側部低拡散材)の施工 ⑥模擬廃棄体の設置(一部)

施工前

2008.3

① 側部充填材の施工

2009.3

⑦区画内充填材の施工(一部) ⑧<mark>側部低透水層の施工</mark>(一部)

2010.12

⑨模擬廃棄体の設置(一部)⑩区画内充填材の施工(残り)⑪側部低透水層の施工(一部)

2012.2

12側部低透水層の施工(一部)

2013.3

13上部セメント系材料(上部コンクリートピット、上部低拡散層)の施工 14上部低透水層、上部充填材の施工

2014.2

2014.12

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(3/9)

<u>施工試験状況:①底部低透水層の施工</u>

- □ 使用材料: 100%ベントナイト(粒状ベントナイト:クニゲルGX(粒 径10mm以下))使用
 - ▶ 粉末ベントナイトに比べ、低い締固めエネルギーで高い密度が達成で きること、など
- □ 施工時の管理目標値:
 - ▶ 透水係数5.0×10⁻¹³m/s 以下
 - ▶ 乾燥密度1.6±0.1Mg/m³, 含水比21±2%
- □ 試験結果:
 - ▶ 低透水性や力学性能を損なうような欠陥を生じさせず、均質な部材を 構築するための低透水層の施工方法と、構築後の部材の初期性能を 確認した。

空洞内の湿度が高い条件(夏場)で は結露やローラ面へのベントナイト 付着(初期転圧時)が発生

アスファルトフィニッシャーにより敷均し

大型振動ローラにより転圧

端部は小型振動ローラにより転圧

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(4/9)

<u>施工試験状況:②側部低透水層の施工</u>

人手による吹付

ロボットによる吹付

敷均し機械による敷均し

(吹付工法)

(転圧工法)

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(5/9)

<u>施工試験状況:③底部低拡散層の施工</u>

- □ 使用材料: 高流動、低発熱系のモルタル(膨張材添加)
 - ▶ 水みちを生じさせる可能性のある粗骨材や鉄筋等を使用しない
 - ▶ 一度に打込むことで低拡散性の弱部になると考えられる打継目をできる限り排除
 - > 温度変化に伴うひび割れ発生を抑制 等
- □ 施工時の管理目標値
- ▶ 実効拡散係数1.0×10⁻¹²m²/s 以下、部材厚さ0.6m(-5mm 以上+15mm 以下)
- □ 試験結果:
 - 高流動モルタルの大量・一括打込みの施工性、品質(部材の厚さ等の出来形)、初期性能(拡 散係数等)から、極小さな拡散係数の低拡散材の構築が可能な施工技術・施工方法を確立した。また、ひび割れ発生の抑制技術の有効性を確認した。

モルタル供給状況

流動性の低下現象 (ベントナイト上では粗度係数が大きい)

バイブレータ使用状況

左官仕上げ状況

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(6/9)

<u>施工試験状況: ④空洞充填材(上部)の施工</u>

- □ 使用材料: 砂+ベントナイト(+クニゲルV1:15%)
- □ 施工時の管理目標値
- ▶ 透水係数1.0×10-8 m/s(周辺岩盤よりも低い透水性)
- □ 試験結果:
 - ▶ バイブロコンパクタ等機械と吹付け機械による施工性、品質(乾燥密度・層厚さ等の出来形)、 初期性能(透水係数等)から、上部の狭隘部でも、既存の施工機械・施工方法を用いて充填材の構築出来ることを確認した。

プレートコンパクタ(60kg)による予備転圧

バイブロコンパクタ(300kg)による転圧

吹付け機による吹付け

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(7/9)

<u>施設/岩盤挙動の計測:①岩盤変位等の計測</u>

□ 模擬施設に温度計やひずみ計等の計測器(593台)を設置、また、周辺岩盤に 間隙水圧計及び岩盤変位計(37台)を設置し、模擬施設挙動及び模擬施設構 築に伴う周辺岩盤挙動を計測(2019年度まで実施)

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(8/9)

施設/岩盤挙動の計測:②低拡散層のひび割れ観測

□ 施工後比較的初期段階にひび割れは発生するが、その後は、ひび割れの幅増大、長さの進展、あるいは、新たなひび割れの発生は観測されていない(2019年度まで実施)

3.1地下空洞型処分施設性能確証及び閉鎖技術確証試験(9/9)

<u>施設/岩盤挙動の計測:③地震観測</u>

- □ 2013年10月より、試験空洞(1台)と模擬施設(2台)に地震計を設置し、地震動観測を実施。(継続中, 2021年度に地上部に1台追加)
 - ▶ これまでに観測された最大加速度は、2019年8月15日の青森県三八上北地方を震源とするM5.5の地震で、水 平方向(x方向)で、地震計①で25.8Gal、地震計②28.7Gal、地震計③で30.7Galを記録。

3.2 地下空洞型処分施設機能確認試験(1/14)

1 的: 処分施設の閉鎖後の長期的な管理に資するため、2014年度までに試験空洞内に構築した模 擬施設も活用し、人工バリアや周辺岩盤の長期に亘る機能を確認するためのモニタリング計 画を検討する。

3.2 地下空洞型処分施設機能確認試験(2/14)

□ 光ファイバセンサー技術の原理 光ファイバーにパルス光を入射し散乱光を発生させる

(注)ブリルアン散乱用にPPP-BOTDA方式、レイリー散乱用にTW-COTDR 方式 (Neubrex社製NBX-7020を使用)

光ファイバセンサー用計測器

散乱光のスペクトル

ロ 光ファイバセンサー技術の特徴

- 中深度処分施設のモニタリングに光ファイバセン サー技術を活用する場合の利点は次のとおり。
 - ▶ 点センサーではなく、分布計測が可能である ためケーブル量を最小化することが可能
 - ▶ 既存の計測器よりも高耐久
 - ▶ ひずみ、温度、(圧力)を同時計測
 - ▶ センサー部に電源が不要

実規模施設に設置した 既存計測器のケーブルの束

※ 光ファイバでは圧倒的に小さな欠損で多くのデータを取得可能

3.2 地下空洞型処分施設機能確認試験(3/14)

- □ 閉鎖措置段階以降に廃棄物埋設地の状態をより直接的に把握するためのオプションとして、光ファイバセンサー技術の適用性を検討
- > ラボ試験
- ①:耐久性の検討
- 割設方法の検討
- ③: 圧力計測の検討
- ▶ 既設の実規模施設を活用した試験
- ①:温度計測
- ②:人工ひび割れ試験(手前コンクリートピット・上部低拡散層)

3.2 地下空洞型処分施設機能確認試験(4/14)

ラボ試験①:耐久性の検討

- □ 現地環境下で想定される劣化要因(塩分・高アルカリ・放射線)に対する光ファイバの破断強度変化
 - ▶ 塩水: 汎用タイプは浸漬期間の増加により劣化が進行、耐水タイプはほとんど変化しない
 - ▶ 放射線: 汎用タイプ及び耐放射線タイプとも変化なし
 - ▶ 高アルカリ:汎用タイプは10日間の浸漬で激しく劣化、いっぽう、耐水タイプはほとんど変化しない
- □ ラボ試験から推定した100年経過時点の単位長さ当たりの累積破断個数より、環境温度29℃、光ファイバ 長5,000mでの累積破断確率は10⁻⁶未満(通信分野で一般的)と推定される。
- □なお、解析によれば、低拡散層表面の温度は環境温度(15°C)と同程度で推移するため、累積破断確率 は十分に小さい値になると考えられる

3.2 地下空洞型処分施設機能確認試験(5/14)

<u>ラボ試験②:敷設方法の検討</u>

- □ ひずみ分布計測では、接着剤により、光ファイバセンサと被計測物との一体性を確保するが、その一体性が長期的に維持されるとは考えにくい。そこで、接着剤に期待しない光ファイバセンサの敷設方法の試験を実施
- □ 試験装置で付与する圧力を変えながら実験し、摩擦力向上策(凹凸被覆)の効果、隙間開閉による影響などを確認 ⇒ 試験の結果、被覆材表面凹凸による有意な差異は認められなかった
- □ 感度は圧力によって異なるものの、ベントナイト膨潤圧想定値(最大1.5MPa)よりも小さな圧力範囲で検知が可能であった

圧力の増加に伴うひずみの増加を検知

3.2 地下空洞型処分施設機能確認試験(6/14)

ラボ試験③: 圧力計測の検討

- □ 光ファイバセンサーによって、ひずみ・温度分布だけでなく圧力分布を計測できれば、低透水層の膨 潤圧などのモニタリングに資することができる。
- □ 被覆(厚、材料)の異なる二種類の光ファイバセンサを、ポーラスストーンとベントナイトを模擬した軟質ゴム材料 との間に配置し、ジャッキ加圧により生じる二種類のひずみ計測結果の差から圧力状態を捉える
- □ 圧力の定性的な上昇傾向は確認できたが、ひずみ量は20µ程度と極めて微小な範囲での変動であり、精度の 観点で圧力の定量化には課題

軟質ゴム上への光ファイバセンサ配置

3.2 地下空洞型処分施設機能確認試験(7/14)

<u> 既設の実規模施設を活用した試験①:温度計測</u>

- □ アクセス坑道沿いに光ファイバセンサーケーブルを敷設して、ブリルアン 方式とレイリー方式により、全長約2,750m(往復)における温度変化を不 定期に計測した。
- □ その結果、ブリルアンによる温度計測は、温度計と高い相関があることを確認した。

光ファイバセンサーケーブルと温度計の配置

温度計測結果(TD1000;レイリー方式)

温度計測結果(TD1000;ブリルアン方式)

3.2 地下空洞型処分施設機能確認試験(8/14)

<u>既設の実規模施設を活用した試験②:人工ひび割れ試験</u> (上部低拡散層)

- ▶ ひび割れの予兆となる局所的な引張ひずみについては、光ファイ バセンサー(レイリー計測)の感度が高い傾向がある
- ▶ ひずみゲージが断線するような幅のひび割れについては、光ファイ バセンサー(ブリルアン計測)の感度が高い傾向がある

目視でひび割れ発生を確認(0.2mm幅)

3.2 地下空洞型処分施設機能確認試験(9/14)

段階	建設段階		廃棄	物の埋設	没階	閉鎖措置	保全	廃止措置
施設概念図						C		
計測/分析項目								
処分施設の変形	臤	存計測技術	ប៊					
低拡散層のひび割れ	既	存計測技術	ប៊					
			÷	とファイバセ	ンサー技術	i		
泪由亦化	毘	モ存計測技 征	杅					
加度发化			ን	とファイバセ	ンサー技術	į		
裏面排水の水質		既存計	測技術					
周辺地下水の水質			既	存計測技術	订			
地震動		既存計	測技術			> 計	則位置限定	>
施設内の圧力分布			ት	とファイバセ	ンサー技術	į		

3.2 地下空洞型処分施設機能確認試験(10/14)

水質モニタリングの検討例①

- □ 閉鎖措置段階以降は、施設周辺のボーリング孔における地下水組成モニタリングが候補になると考えられる。
- □ モニタリングの位置や時期の検討に資するため、廃止 措置段階までの期間(約400年)を対象に、解析により施設周辺の地下水を対象とした化学挙動を評価した。
 - ▶ 地下水組成が変化する範囲は施設周辺約100m程度
 - ➤ ひび割れやEDZがモニタリング値に及ぼす影響は小さい
 - ▶ 動水勾配がモニタリング値に及ぼす影響は比較的大きい
 - ▶ 人工バリアの物性値が大きく変化してもモニタリング値に 及ぼす影響は小さい
 - ▶ 施設周辺にて変化するイオンは主に吹付けコンクリートに 由来する
 - ▶ 地下水組成モニタリングにおいて着目すべきイオンとしては、OH-, Na+, K+, Ca2+

pH分布(400年後)

3.2 地下空洞型処分施設機能確認試験(11/14)

水質モニタリングの検討例②

- 閉鎖措置前:
 - ▶ 埋設坑道内:浸出水は排水路や排水処理設備で採取し、ガスは検知対象の特性(比重など)を考慮した位置で採取し、分析する
 - ▶ 埋設地外:敷地内の試掘ボーリング孔(観測孔)で土壌・地下水・ガスを採取し、分析する。なお、試掘ボーリング孔 位置決定には、地下水の流向や解析結果(400年間、pHや各種イオン濃度の変化が生じる範囲は、施設から約 100mの範囲内)等を参考とする。
- 閉鎖措置後:
 - > 埋設坑道内: 資料採取不可
 - ▶ 埋設地外:敷地内の試掘ボーリング孔(観測孔)で土壌・地下水・ガスを採取し、分析する。

3.2 地下空洞型処分施設機能確認試験(12/14)

<u>低拡散層のひび割れ、温度変化のモニタリングの検討例①</u>

□ モニタリング方法の概要

- 閉鎖措置前:
 - ▶ 低拡散層表面が露出している期間は、既存計測技術(目視又はカメラ撮影、赤外線温度計等)と光 ファイバセンサー技術の両技術でひび割れ、温度観測を実施
 - ▶ 観測部位が不可視状態となった後は、光ファイバセンサー技術による計測を実施
 - ▶ なお、不可視状態となる前までに、既存計測技術と光ファイバセンサー技術による計測結果が整合していることを確認した上で、光ファイバセンサーによる計測に移行する
- 閉鎖措置後:
 - ▶ 光ファイバセンサーによる計測

3.2 地下空洞型処分施設機能確認試験(13/14)

<u>低拡散層のひび割れ、温度変化のモニタリングの検討例②</u>

□ 光ファイバセンサーの設置方法

- ▶ 低拡散層に発生するひび割れは、既設の実規模施設におけるひび割れ発生状況や施設挙動の定量化 検討の結果を踏まえると、低拡散層に発生するひび割れの位置や方向を予め特定することは困難と考 えられるため、光ファイバセンサーを格子状に設置する
- ▶ 累積破断確率、バリア貫通面積を考慮して、ケーブル延長、本数を検討

最も最高温度が高い出力点⑪(低拡散層側)の温度履歴

▶ 温度分布計測は、光ファイバセンサーを格子状に設置する必要はないが、低拡散層のひび割れ(ひずみ)計測用光ファイバセンサーで同時計測することが合理的

低拡散層のひび割れ計測用光ファイバセンサ設置例 側部(側面図) 格子間隔:900mm 空洞横断方向1.1km, 空洞 縦断方向1.0km

RWMC

28

<u>施設内の圧力分布のモニタリングの検討例</u>

ロ光ファイバセンサーの設置方法

- ▶ 施設内の圧力分布計測も、格子状に光ファイバセンサーを設置する必要は無い
- ▶ 不均質な地下水浸潤を考慮しない解析でも、側部低透水層では、場所によって飽和度、全応力の経時変化に差異が見られることを考慮して、設置間隔を検討
- ▶ 圧力分布計測用の光ファイバセンサーは、ひび割れ計測用のそれと構造が異なるため、合理的な設置には課題がある

3.3 地下空洞型処分調査技術高度化開発(1/5)

- 目 的: 大規模な坑道や地下空洞型処分施設などを建設する上で必要となる、岩盤にかかる初期地圧の三次元的な分布を測定する技術の開発等、地下環境を把握するための技術整備を行うと共に、最適な施設設計を支援するための技術整備を行う。
 - (1) 中深度処分相当の地下環境を評価する技術の高度化

堆積軟岩を対象として、鉛直ボーリングにより、応力解放法により3次元初期地圧を測定できる装置の試作・実証を行う。また、堆積軟岩中に掘削される大空洞を考慮した、地下水流動場の測定・解析技術について調査・整備する。さらに、地震時における中深度処分施設の空洞並びに施設挙動を精度高く解析することが可能な技術を整備する。

(2) 中深度処分相当の地下環境を考慮した設計技術の高度化

複数の技術オプションに関する基礎情報を整備するとともに、技術オプションの選択やそれらを組み合わせた 処分システム(設計オプション)の絞り込み手法を開発する。また、中性子イメージング装置等を利用し、ベントナ イト系材料の透水メカニズムに関係する物性を測定し、施設設計の合理化や長期性能に対する説明性向上のた めの基礎情報を整備する。

実施場所: 日本原燃㈱の試験空洞内 他

3.3 地下空洞型処分調査技術高度化開発(2/5)

3.3 地下空洞型処分調査技術高度化開発(3/5)

		原環センター 東電設計
--	--	----------------

開発スケジュール

	開発項目等	令和2年度	令和3年度	令和4年度	令和5年度	令和6年度
	既往技術の調査					
1. 中深度	測定装置の開発	測定装置概念設計	基本設計	詳細設計/製作	室内検証試験	現場検証試験
処分相 当の地 下 環 境	参照データの取得					
を評価 する技	初期地圧測定の開発に付随した技術課題の検討	技術課題の抽出	測定装置仕様の検討	測定装置仕様の検討	岩盤状態の評価	測定装置の適用性評価
術の高 度化	地下水流動評価技術の調 査	麻術子法の選定 既往データ/技術調査	<u>麻初子法の安当性検証</u> 評価手法の整備	<u>主内検証試験所</u> 初 技術課題の整理	- 近场 快 証 武 禄 所 11	<u>過用限</u> 尔守の快到
		-				
		計測計画	計器設置(地上、地下)◀	計測・>	ンテナンス	→ 計器撤去
	地震動観測及び地震時影 響評価技術の検討	計測計画 解析手法検討 (文献)	計器設置(地上、地下)◀ ◀━━━━━━━━━━━ 地震に	──────────────────────────────── む答解析手法の検討 ───	シテナンス──	→ 計器撤去 地震応答解析:評価
2. 中深度	地震動観測及び地震時影 響評価技術の検討 既往検討成果の調査	計測計画 解析手法検討 (文献)	計器設置(地上、地下)◀ ◀───── 地震	────────────────────────────────────	シテナンス →	→ 計器撤去 地震応答解析:評価
2. 中深度 処分相 当の地 下環境	地震動観測及び地震時影響評価技術の検討 概往検討成果の調査 取り組むべき課題、制約条件、 前提条件の抽出・整理と全体 計画の策定	計測計画 解析手法検討 (文献)	計器設置(地上、地下)◀ ◀───── 地震		シテナンス >	→ 計器撤去 地震応答解析:評価
2. 中深度 処分相 当環境 を考慮	地震動観測及び地震時影響評価技術の検討 既往検討成果の調査 取り組むべき課題、制約条件、 前提条件の抽出・整理と全体 計画の策定	 計測計画 解析手法検討 (文献) オプション候補選定 	計器設置(地上、地下)◀ ◀───── 地震に 課題抽出	→ 計測・2 む答解析手法の検討 → オプション提示	シテナンス → オプション評価	→ 計器撤去 地震応答解析:評価 最適化手法の整備
2. 中処当下を たた た た 技術	地震動観測及び地震時影響評価技術の検討 既往検討成果の調査 取り組むべき課題、制約条件、 前提条件の抽出・整理と全体計画の策定 技術オプションの検討	計測計画 解析手法検討 (文献) オプション候補選定	計器設置(地上、地下) ◆	計測・> ご答解析手法の検討 −− オプション提示 3下施設の概念設計と予備	ンテナンス → オプション評価 的な性能評価 →]	→ 計器撤去 地震応答解析:評価 最適化手法の整備
2. 中処当下をし計の 深分の環考設術度	地震動観測及び地震時影響評価技術の検討 既往検討成果の調査 取り組むべき課題、制約条件、 前提条件の抽出・整理と全体計画の策定 技術オプションの検討 ベントナイト系材料の移行	 計測計画 解析手法検討 (文献) オプション候補選定 既往文献調査/ 	計器設置(地上、地下) ◆ 地震 課題抽出 [← 人工バリア及び地 基礎データ取得	 計測・2 芯答解析手法の検討 オプション提示 3下施設の概念設計と予備 基礎データ取得 	ンテナンス オプション評価 的な性能評価 ⇒] 基礎データ取得	→ 計器撤去 地震応答解析:評価 最適化手法の整備 移行抑制機構の

3.3 地下空洞型処分調查技術高度化開発(4/5)

ロ 中深度処分相当の地下環境を評価する技術の高度化

堆積軟岩を対象に鉛直孔(深度-200メートル程度まで)で3次元初期地圧を測定することを目的として、応力解 放法の一種である孔壁ひずみ法と円錐孔底ひずみ法を応用して、課題解決を目指す。この新たな応力測定方 法を「**円錐孔壁ひずみ法**」と称する。現在、測定装置の基本設計を取り纏めた段階。 [技術課題の検討]

3.3 地下空洞型処分調査技術高度化開発(5/5)

ロ 中深度処分相当の地下環境を考慮した設計技術の高度化

評価項目の例						
大項目	小項目					
設計の実現性	適用する建設・操業に係る技術の詳 細設計への具体化の見通し					
	適用技術・導入装置の複雑さ					
ᇩᆕᅸᅸᇔᆇᄴ	建設・操業期間中の地下構造物の 管理の容易性					
建設・探耒住	放射線管理区域での作業性					
	事故発生時における全ての場所へ					
	のアクセス性					
- 閉鎖後長期の	閉鎖認可に係る性能確認の確からし さ					
安全性	自然事象シナリオを対象とした長期 安全性					
問始命の中心を	品質保証・品質管理のし易さ					
別頭別の女主任	閉鎖前安全性の予測性					
環境保全	周辺環境への影響の予測性					
回収可能性	回収の容易性					
	建設段階に必要な費用					
費用·経済性	操業段階に必要な費用					
	閉鎖段階に必要な費用					

RWMC

●中深度処分について、これまで、試験空洞等を活用し、約1 5年に渡って基盤技術の研究開発を推進してきた。

●今後も、中深度処分の円滑な実施に向け、必要な研究開発を継続していく。

Radioactive Warter Disposal Project Center

 放射性廃棄物処分技術の最新動向に関する総合シンポジウム Comprehensive Symposium on Latest Trends in Radioactive Waste Disposal Technology

研究施設等廃棄物処分の基本的な考え方と 処分技術の開発状況

Basic Concept and Technical Development Status for Near Surface Disposal of LLW Generated from Research, Industrial and Medical Facilities, etc.

令和4年5月17日

日本原子力研究開発機構バックエンド統括本部 埋設事業センター Japan Atomic Energy Agency

坂井 章浩 Akihiro Sakai

Radioactive Wastes Disposal Project Genter 本日のご説明内容 Contents

▶ 研究施設等廃棄物の埋設事業について Disposal project of LLW generated from research, industrial and medical facilities

● 埋設施設の概念設計について Conceptual design of disposal facilities

立地基準の検討

Development of siting criteria

Radioactive Warter Disposal Project Center

研究施設等廃棄物の埋設事業について

Disposal project of LLW generated from research, industrial and medical facilities

放射性廃棄物の発生

Nuclear and RI facilities where low level waste is generated

 放射性廃棄物は、原子力発電所や、再処理施設、ウラン濃縮施設などの核燃料 サイクル施設、医療機関や研究機関の運転や解体に伴って発生します。

料加工施設から発生するウラン廃棄物を含む区分

Radioactive Warter Disposal Project Center 国内における放射性廃棄物の処分概念

Disposal Concept of Radioactive Waste in Japan

ピット処分とトレンチ処分の安全確保の考え方

Concept of Ensuring Safety for Concrete Vault Disposal and Trench Disposal

<mark>ピット処分 Concrete Vaults for LLW</mark>

Trench disposal facilities for VLLW (Landfill)

➤ コンクリートピットや水を通しにくいベントナイト混合土 によって、放射性物質を閉じ込める。

Radioactive materials are confined in the disposal facility by concrete vaults and bentonite-mixed soil.

▶ 放射能は時間とともに減衰し、将来、コンクリートピットの機能が低下した場合でも、周辺土壌等によって、放射性物質の生活環境への移行が抑えられ、安全性が確保される。

Radioactivity will reduce with the passage of time, and even if the function of the concrete vaults declines in the future, the surrounding soil, etc. will reduce the transfer of radioactive materials to the biosphere.

> 埋設施設の覆土後、約300年間、埋設地の管理を行う。

The disposal site will be controlled for about 300 years after installation of cover soil over the disposal facility.

▶トレンチ埋設対象の放射性廃棄物は、放射能レベル が極めて低く、周辺土壌によって、放射性物質の生 活環境への移行が十分抑えられる。

Radioactivity of the waste subject to trench disposal is very low level, and radioactive materials is sufficiently restrained from transferring to biosphere by the surrounding soil, etc.

透水性の小さい土壌等で埋設施設を覆うことにより、 放射性廃棄物に接触する水の浸入等がより抑えられ、 安全性が確保される。

The infiltration water into trench is reduced by low permeability cover soil.

▶ 埋設施設の覆土後、約50年間、埋設地の管理を行う。

The disposal site will be controlled for about 50 years after installation of cover soil over the disposal facility.

LLW is generated from the nuclear energy research / medical and industrial use of radioisotopes

Research Reactor

Post-Irradiation Examination

ation Experiments with RI ion in fume hood

Cancer Screening

2,400 different sources in Japan

Current status

- These radioactive waste (RW) is still accumulating
- Total amount of waste : 660,000 drums(200-liter drum equiv. 1.32*10⁵m³) since the 1950s.
- RW possessed by JAEA occupies 56% of these RW.
- The issues will affect operation of R&D facility.

Many wastes have been stored in storage facilities.

Aged facilities cannot be decommissioned.

Early implementation of the disposal is demanded in order to promote nuclear R&D and radioisotope utilization.

JAEA has been assigned an implementing organization for the disposal since 2008.

埋設事業の概要

Outline of JAEA disposal project

■埋設施設の種類 Types of disposal facilities

- ピット処分及びトレンチ処分施設
- Concrete Vault
- Trench disposal (Landfill)

■対象廃棄体物量評価結果 (平成30年度) Amount of radioactive waste subject to disposal by JAEA (Investigation result as of 2018)

: <mark>約67万本(200Lドラ</mark>ム缶) Approximately **134,000 m**³

(うち、原子力機構の廃棄体物量は約50万本) including approximately 100,000m³ of JAEA

■埋設施設の規模 75万本 (200Lドラム缶) *Capacity of Disposal Volume* 150,000 m³ ピット処分対象 22万本、トレンチ処分対象 53万本 *Disposal volume for Concrete Vaults :* 44,000m³ *for Trench Disposal :* 106,000m³

研究施設等廃棄物の発生施設

Major Facilities where RW subject to JAEA disposal project is generated.

発生施設の	種類(放射能インベントリに着目した分類) Categories of facility	発生施設ごとの本数割合 (67万本*・平成30年度調査結果)				
Categories	Major nuclear facilities	Estimated volume rate of RW generated from each category of facilities				
Research Reactors	Reactors possessed by JAEA(Fugen、Monju、 JPDR、JRR-1、2、3、3M、4、NSRR、JMTR、HTTR、 Joyo、Mutu (Nuclear power ship)), and other research reactors (東大炉、京大炉、近大炉、東京 都市大炉、立教大炉、日立炉、東芝炉等)	ピット処分 Concrete Vault 23% トレンチ処分 Trench disposal				
Spent Fuel Reprocessing Plant	分離精製工場、Pu転換技術開発施設(PCDF)、 TVF等	26% 35%				
Post- Irradiation Examination (PIE) Facility	燃料試験施設、ホットラボ、再処理特別研究棟、 JMTRホットラボ 、MMF、CPF等	11% 33% 44%				
Uranium utilization facilities	加工施設(Fabrication)、濃縮(Enrichment)、製錬 (Smelting) 、転換施設(Conversion)、実験施設 (Examination)	■ 原子炉施設(<i>Research Reactors</i>) ■ 再処理施設(<i>SF Reprocessing Facility</i>)				
Other facilities	RI utilization, Accelerators, Waste management facilities, etc.	 照射後試験施設 (PIE Facilities) ウラン取扱施設 (Uranium Utilization Facilities) その他の施設 (Other Facilities; (RI使用施設、他 RI Utilization, others.) * 埋設施設の規模は75万本 (ピット22万本 トレンチ535) 				

9

将来の物量の変動を考慮して、8万本の裕度を設定している。

研究施設等廃棄物の放射能濃度(1)

Radioactivity Concentration of LLW Generated from Research Facilities, etc.

・ピット埋設対象の廃棄体の放射能濃度は発電所廃棄物と同程度で、時間の経過とともに減衰する。

・トレンチ埋設対象の廃棄体等には長半減期の核種も含まれるため、子孫核種によって数万年後の放射能
 濃度が若干増加するが、低い濃度を推移する。

Nuclides (half life (y))

研究施設等廃棄物の放射能濃度(2)

Radioactivity Concentration of LLW Generated from Research Facilities, etc.

廃棄体等の主要核種の平均放射能濃度※

より作図

埋設事業の想定スケジュール Warter Dirporal Project Center

Basic Schedule of the Disposal Project

*1: Institutional control periods for concrete vaults and trench facilities after closure are about 300 and 50 years, respectively.

理設事業のこれまでの実施概要

Status of JAEA Disposal project so far

							Ye	ar						
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021 ~
Govern ment	原	子力機	冓法の改	正 Amer	ndment o	f JAEA's I	Law							
		基本方	針策定(2008.12	2.25) <mark>Est</mark> dis	ablishme posal proj 	nt of basi iect of LL	c plan of W from re	promotion esearch ir	n for the istitutes,	etc.			
JAEA	坦業	設事の計	実施計 Approva facilities 埋設旅 概念	画認可(al of Imple etc 起設の Co 設計 Di	2009.1 [°] ementatic onceptua sposal fa	I.13) ⇒ plan foi I Design o pcilities, et	t象物量•施 r the disp of tc.	設設計・総す osal proje	費用等の見 ject of LLV	直しにより通 V from re	Search		直近の 刻 2019.11 ecent Am f the Plan	ɛ更認可 .1) endment
	回 Prepar Impler plan	」策定 <u>ation o</u> f pentation	「埋討 括 <i>Technica</i>	b施設設 術専門 Commit	置に関す 委員会」	rる 立 ting 埋	1 地基準 地手順の F reparatio	、立 作成 n of Siting	立地基 立地に	準及び 関わる 諸	Σ地手順 ≸検討 Procedu	の公表 re and Si	ting	
			procedur facilities	e and crit 埋設加 Techn	eria of di	sposal F 、安全評 clopment	rocedure P価等 of dispos	and Sitin	g Criteria s and	Criteri	a were pເ	iblished.		
	廃棄体の放射能濃度評価方法の構築 Development of decision method for radioactivity concentration of RW													
				廃棄体(Developr	の受入基 ment of w	<u>t</u> 準 aste acce	eptance o	riteria of	RW		1			
				廃棄物 Informat 安全規制	発生事第 <u>Ion excha</u> 制制度零	き者等と(<u>ange with</u> を備への	の調整 RW s ge 協力	nerators	I		1			
				Providin	g Informa	ation rega	rding dis	oosal to r	egulatory	authority	ſ	/		

Radioactive Warter Disposal Project Center

埋設施設の概念設計について

Conceptual design of disposal facilities

ピット処分施設の検討状況^{ised tire Warter Dirporal Project Center}

Conceptual Design of Concrete Vaults

Waste solidified with cement, etc. in a container

トレンチ処分場の設計概念

Concept for Types of Trench Disposal Facilities

概念設計

Conceptual Design of JAEA

トレンチ処分施設 Trench facility

トレンチ処分 53万本 Disposal volume for Trench Disposal : approx. **106,000m**³

(*1) 廃プラスチック類、ゴム屑、金属屑、ガラス屑、コンクリート屑及び陶磁器屑、がれき類 (*2) 安定化及び無害化された特別管理産業廃棄物は処分対象に含まれる 廃棄物処理法

Waste Disposal and Public Cleansing Law

(for industrial and municipal waste)

産業廃棄物の安定型処分場

Radioactive Warter Disposal Project Center トレンチ処分施設の検討状況(2)

Conceptual Design of Trench Disposal Facility (2)

定置中

Emplacement work

|遮水層

付加機能型トレンチ埋設施設

Trench with prevention system from permeation and leakage of water

性状の混在した廃棄物、焼却灰や廃液の固化体など、安定5品目以外 の廃棄物を埋設する。

The facility is applied for solid waste made from cementation of liquid. sludge, ash, and miscellaneous solid waste.

雨水浸入防止用テント

Rainwater prevention ten

埋設事業における総事業費の見積もり

Estimation of Total Cost of Disposal Project

JAEA

Radioactive Warter Disposal Project Center

立地基準の検討

Development of Siting Criteria

立地手順と基準の検討経緯

Background of Development of Siting Procedure and Siting Criteria

Radioactive Wastes Disposal Project Center

- Development of Siting Criteria
- 立地基準項目の選定 (Selection of items of siting criteria)
- 安全性(Safety):
 国内の安全規制の要件において、立地選定段階で避けるべき項目を立地基準項目とした。
- 環境保全、経済性・利便性、社会的要件: Environmental protection, Economy / Convenience, Social requirements
 国内外の類似施設の立地基準の事例に基づいて、立地基準項目を選定した。
- ・ 埋設施設の操業に向けたプロセス (Process toward operation of disposal facilities)

安全性に係る立地基準の検討

Flow Chart of Assessment of Siting Criteria regarding Safety

new safety

安全性に係る立地環境条件の区分

Categorization of Environmental Conditions on the Site regarding Safety

合理的な設計対応が困難な立地環境条件 Environmental conditions to which rational engineering measure is very difficult (1) 自然環境 (Natural Environment) 立地基準項目へ反映 火山、津波、陥没、洪水、活断層 Volcanoes, tsunamis, depressions, floods, active faults Categorization into items of (2) 社会環境(Social Environment) siting criteria 石炭、鉱石等の天然資源 Natural resources such as coal and ore 基本的 パラメータスタディの項目 Items of the parameter study 立地条件* ① 施設設計に係る項目 Items regarding design of disposal facilities Basic site 埋設施設の安全評価に影響を及ぼす項目 Items that influence the safety assessment conditions in (1) 自然環境 Natural environment safety review 地盤の透水係数、分配係数、地下水位の深度、地下水の動水勾配、降雨の浸透水量、 auideline* 帯水層の厚さ hydraulic conductivity, distribution coefficient, groundwater level, hydraulic gradient, seepage 河川等の流量、河川等までの距離等 water rate, aquifer thickness, etc. (2) 社会環境 Social environment * The safety review Drinking river water and groundwater, guideline was 河川、地下水の飲用 cultivation of agricultural products, abolished. Now. 農作物の栽培、畜産物の飼育、水産物の漁獲 等 breeding of livestock products, fishing of regulations have marine products, etc. bee established. ② 敷地の整地等に係る項目 Items regarding land leveling, etc. 施設の建設費又は敷地の土工費等に影響を及ぼす項目 Items that influence costs for construction of facilities or for earthwork of the site, etc. 敷地の造成、地盤の地耐力、地下水位の深度、地すべり地形への対策工 等 Land levelling, ground bearing capacity, landslide topography countermeasures, etc

Evaluation Result of Parameter Study of Items that Influence the Safety Assessment

●パラメータの分布から評価値をランダムに組み合わせ、1,000通りの立地条件を設定し、線量を評価

1,000 site conditions were made by randomly choosing the values according to the probabilistic distribution of parameters. Then, doses were evaluated at the 1,000 site conditions.

●1000通りの立地条件のうち97.5%が線量のめやす値(10µSv/y)以下となることを確認

It was examined whether the evaluated doses at 97.5% of the 1000 site conditions were below the dose criteria (10 µSv / y)

※1 PNC - TN7450 96-002 における土壌及び風化岩盤のデータを基に作成。※2 国土交通省の水文水質観測データベースを基に作成

Evaluation Result of Parameter Study of Items regarding Land Leveling, etc.

評価項目毎に評価条件を設定し、対策工を設計の上、その費用を算出して総事業費に対する割合を評価。その結果、合理的な範囲内であるかどうかを確認。

Engineering measures were considered for each item. The cost for the measures was calculated. As a result, It was examined whether the ratio of the cost to total cost of disposal project was reasonable.

Radioactive Warter Disposal Project Genter

Establishment of Siting Criteria

検討結果に基づいて、埋設事業の実施計画及び別途JAEAが文書に定めて、以下のように策定

Based on the examination results, siting criteria were described in the implementation plan for the disposal project and in the other document published by JAEA. Siting criteria are as follows.

立地基準に係る今後の検討について Disposed Project Center

Future Work regarding Siting Criteria

● 原子力機構の埋設事業の実施計画において、埋設施設の立地の選定に係る手 順は、以下となっている。

In the implementation plan of the disposal project of JAEA, the siting procedures are as follows.

1) 埋設事業の適切な運営が可能と考えられる地点の属する"地方自治体への協 力要請方式"とし、

A method of the requesting cooperation to local governments^{*a} which the candidate site belongs to

2)協力要請方式による地点の選定の状況等を踏まえて、必要に応じて埋設事業 に関心を有する基礎自治体*1の募集も行う。("基礎自治体*1の募集方式")

Another method for recruiting municipalities^{*b} who are interested in attracting disposal facilities, if necessary.

 実施計画に記載のこのような手順に基づき立地選定を進めるにあたり、手続きの 透明性を確保して公正な選定を行うため、引き続き、立地基準に対する評価方法 及び立地手順の具体的な内容について詳細を検討する。

In order to ensure the transparency of the procedure and to execute the fair site selection, JAEA will continue to examine the details of the assessment method for the siting criteria and details of the siting procedures.

*1: 基礎自治体は、市区町村を意味している。

*a: Local governments mean government of the prefecture and government of city (or town, or village, etc.) *b: Municipality means government of city (or town, or village, etc.)

Radioactive Warter Disposal Project Center

今後の検討について

Future Works regarding Technical Development of Near Surface Disposal of LLW Generated from Research Facilities, etc.

Radioactive Wastes Disposal Project Center

Future Works

今後(R4~R10: JAEAの第4中長期目標期間)に向けた 課題 Future Works from 2022 to 2028

立地活動を進めるため、理解促進活動を関係機関等の協力の 下で進めるとともに、以下の技術的な検討を行う。

In order to proceed with siting activities, JAEA will promote the activities to enhance the understanding about disposal of LLW generated from research facilities, etc. with the cooperation of related organizations and will also conduct the following technical developments.

◆埋設施設の基本設計に向けた技術検討等(これまでの成果の 体系的な整理によるセーフティケースの構築)を進める。

JAEA will proceed with technical studies for the basic design of the disposal facilities (making the safety case by systematically organizing the study and development results so far).

◆廃棄物発生者の着実な廃棄体製作の推進への支援に向けた 廃棄体受入基準整備を進める。

JAEA will continue to develop waste acceptance criteria (WAC) to help waste generators with the treatment and conditioning of waste packages

Radioactive Wastes Disposal Project Center

Thank you!

放射性廃棄物処分技術の最新動向に関する総合シンポジウム Comprehensive Symposium on Latest Trends in Radioactive Waste Disposal Technology

TRU廃棄物の地層処分におけるガス発生の影響に関する研究開発

R&D on influences of gas generation on geological disposal of TRU waste

公益財団法人 原子力環境整備促進・資金管理センター Radioactive Waste Management funding and research Center (RWMC) 地層処分バリアシステム研究開発部 Geological disposal barrier system R&D division

藤井 直樹 Naoki FUJII

八木 翼 Tsubasa YAGI

発表内容

- 1. TRU廃棄物の概要
- 2. 背景及び目的
- 3. TRU廃棄物処分場でのガス発生量の評価
- 廃棄体パッケージ充填材を対象としたガス発生量の低減 対策

1

5. 人工バリアのガス移行挙動とそのモデル化

本日の内容は、経済産業省資源エネルギー庁から受託して実施した以下の各研究開発等に基づく成果です。

- ・ 平成19年度~平成24年度地層処分技術調査等委託費 TRU廃棄物処分技術 人工バリア長期性能評価技術 開発(5.の内容)
- 平成25年度~平成28年度 地層処分技術調査等事業 TRU廃棄物処理・処分技術高度化開発(5.の内容)
- ・ 平成29年度 高レベル放射性廃棄物等の地層処分に関する技術開発事業(JPJ007597) T R U 廃棄物処理
 ・ 処分技術高度化開発(5.の内容)
- 平成30年度~令和2年度 高レベル放射性廃棄物等の地層処分に関する技術開発事業(JPJ007597)TR U廃棄物処理・処分技術高度化開発(3.4.5.の内容)

1. TRU廃棄物の概要

Radioactive waste in Japan

(excluding medical, research, industrial wastes)

RWMC

1. TRU廃棄物の概要

Radionuclide concentration of TRU waste in Japan

1.TRU廃棄物の概要

Various types of TRU waste

Total TRU waste : more than 19,000 m³

Co-disposal was studied.

TRU廃棄物はガス発生源となる金属、セメントを多く含む

RWMC

2. 背景

地層処分において想定されるガスの発生要因

 1. 放射線分解によって発生するガス(Radiolysis)
 ・周囲の地下水や廃棄体パッケージ容器内の水の分解で発生する水素ガス
 ・アスファルトの分解によって発生するガス
 廃棄物を定置し、パッケージ周辺を充填した段階から発生する。
 セメント系材料に含まれる自由水(Free water in mortal)も発生源になる</u>ため、 設計によっては容器内での発生も考慮する必要がある。

2. 還元雰囲気での金属の腐食にともなって発生する水素ガス(Metal corrosion) 処分坑道内が冠水し、還元環境となった後に発生する。 腐食にともなって発生するため、ガス発生速度、量を算出するためには、 還元環境での腐食速度を知る必要がある。

3. 微生物活動によって発生するガス(Microbial activity) アスファルトやセルロースなどの有機物の微生物分解によってCO₂、N₂、CH₄ガ スが発生すると推定されているが、処分場周囲の環境によって微生物の種類、 活動が異なるため、ジェネリックに設定することは難しい。

2. 背景

TRU廃棄物の地層処分において想定されるガスの発生源

2. 背景

放射性廃棄物(TRU)処分において想定されるガス問題

RWMC

2. 背景

放射性廃棄物(TRU)処分において想定されるガス問題

2. 背景

放射性廃棄物(TRU)処分において想定されるガス問題

・上記のようにガス発生によって核種移行に影響を及ぼす破過やそれによる人工バリアの(核種移行の抑制機能を低減させるような)損傷等の現象が生じるのか?
 ・ガス発生による移行挙動や破過が生じる場所、時間等が精度良く予測できるのか?

RUIIIC

- TRU廃棄物の廃棄体パッケージ
- ▶ 廃棄体パッケージAの形状・概要 【第2次TRUレポート】
- ・容器:廃棄体の収納方法、パッケージの強度、製作方法やハンドリ グ性などを考慮して厚さ5mmの鋼製廃棄体パッケージ
- ・廃棄物の閉じ込め性:なし
- ・構造健全性:パッケージ内をモルタルで充填固化。充填材の強度に より構造健全性を確保。
- 廃棄体パッケージBの形状・概要 【NUMO包括的技術報告書(NUMO SC)】
- ・<u>容器</u>: SM400Aを対象とし、操業時の耐食性、荷重(吊下げ、積上げ)を考慮して<u>50mm厚</u>
- ・廃棄物の閉じ込め性: 万が一の落下時の放射性物 質の漏洩を防ぐため上蓋は<u>溶接して廃棄体を封入</u> する構造
- ・落下時の健全性:落下高さの制限(<8m)を設け、
 見通しを得ている
- ・閉鎖後長期の安全性の評価:300年の平均腐食厚 さ0.3mm (最大5.3mm)、10MPa(静水圧1000m)でひ ずみは限界に達せず、容器が開口することはない として構造健全性を担保

└</>✓〉・発生ガスによる内圧の上昇が廃棄体パッケージの閉じ込め性に影響しないか? ・必要なガス発生抑制対策とこれらを反映したガス発生量評価は?

※容器厚さ50mm

TRU廃棄物処分場でのガス発生量の評価

NUMO-SC等の最新知見に基づく処分条件と現実的な人工バリアの状態設定を反映したガス発生挙動(発生量の経時変化)の評価

廃棄体パッケージ充填材を対象としたガス発生量の低減対策

操業期間中の安全性の向上に加え、閉鎖後数百年程度の放射性物質の閉じ込め性 能が期待できる廃棄体パッケージBについて、**放射性分解による**水素ガスの発生 要因を踏まえ、**水素ガス発生の抑制**が可能な**セメント系内部充填材**の仕様と施工 方法の提示。

人工バリアのガス移行挙動とそのモデル化

ガス影響評価に不可欠な長期の人工バリア(特にベントナイト緩衝材)中のガス 移行解析に必要な二相(ガス相及び水相)流の移行特性について、小規模モック アップ試験によるガス移行挙動の現象理解と3次元の実規模スケールに適用する ための現象解析モデルの高度化。

3. TRU廃棄物処分場でのガス発生量の評価

TRU廃棄物処分場でのガス発生量の評価

より現実的なガス発生挙動の経時的な定量評価

項目	TRU-2	例:TR14-03(NUMO)	本検討
インベントリ	廃棄物受取時 (t=25y)	廃棄物受取時 (t=25y)	廃棄物発生後 (t=0y)
ガス発生開始	(おそらく)処分場閉鎖 時	廃棄物受取時 (t=25y)	廃棄体発生時(t=0y)
水(放射線分 解)	閉鎖後直ちに開口し、地 下水が常に豊富に存在	開口(500y)するまでは、 内部の水を消費してガス発 生反応が進行	開口(300y)するまでは、 内部の水を消費してガス発 生反応が進行

◆廃棄体パッケージの寿命までの期間の様々なイベントを考慮して、各々の水素ガス 発生モードで競合的に消費する水の量を(枯渇の可能性を含め)考慮し、①金属の 嫌気性腐食及び②水の放射線分解によるガス発生量とその経時変化の評価

13

RWMC

金属の嫌気性腐食によるガス発生量の評価

評価条件の設定

部材	種類	腐食 モデル	CR:腐食速度 [m/y]	金属量[Mg]	S:評価上の表面積[m²]	厚さt/直径[mm]
エンドピース	SUS	平板	2.0 E-8 (※1)	1584.0 (※2、※6)	49.6 (※1、※4)	0.34 (※1)
ハル	ジルカロイ	平板	5.0 E-9 (※1)	3168.0 (※2、※6)	221.4 (※4)	0.71 (※7)
キャニスタ	SUS	平板	2.0 E-8 (※1)	858.0 (※2、※6)	1.8 (※4)	5 (※1)
廃棄体パッケージ	炭素鋼	平板	1.0 E-7 (※1)	6341.8 (※2、※6)	10.56 (※5)	50 (※1)
ロックボルト	炭素鋼	円筒	1.0 E-7 (※1)	28.9 (%2, %3, %6)	568.9 (※6)	Φ 25 (※3)
鉄筋(構造躯体)	炭素鋼	円筒	1.0 E-7 (※1)	337.6 (※2、※6)	鉄筋径毎に算出(※6)	D16,22,25,29 (※2)

※1 TRU-2参照
 ※4 1キャニスタ毎
 ※6 1坑道毎
 ※2 NUMO包括参照
 ※5 1パッケージ毎
 ※7 原子力安全研究協会
 ※3 国交省標準参照

【嫌気性腐食の反応式】

<u>3Fe</u>+4H₂O = Fe₃O4+<u>4H₂</u>(炭素鋼、SUS)⇒ST=1.3333 <u>Zr</u>+2H₂O = ZrO₂+<u>2H₂</u>(ジルカロイ)⇒ST=2

廃棄体(ハル・エンドピース	ζ
、キャニスタ)	
廃棄体パッケージ容器	

【平板モデル】

【円筒モデル】

鉄筋、ロックボルト

【水素ガス発生速度】

 $\angle HR = K \times S \times CR \quad [mol/y]$

- ⊿HR :水素ガス発生速度
 - K :換算係数[mol/m³]
 - S:評価上の表面積[m²]
 - CR :金属の腐食速度[mol/y]

 $K = ST \div \rho \div A \times 10^{6} [mol/m^{3}]$

- ST : 腐食金属当たりの水素ガス発生の化学量論
 - ρ ∶换算係数[mol/m³] [mol·H/mol·M]
 - A :金属の原子量[g/mol]

水の放射線分解によるガス発生量の評価

評価条件の設定

水素ガス発生量=G値×放出エネルギー×エネルギー付与率

【G値の設定(暫定値として初期設定)】

ターゲット	G 値	[molecules/1	00eV]	шш
	α 線	β線	γ線	
-tr	-t 10		0.45	Christensen and Bjergbakke (1983),
水	1.5	0.40	0.49	Bjergbakke et al. (1991)

【エネルギー付与率の設定】

各線種ごとに、『核種の<u>賦存状況』、『混合率(水の割合)</u>』、『透過率』の積として表現される。

▶ 核種の賦存状況 α β Y

線種	核種賦存物	犬況による放身	j線エネルギー付与割合		
ターゲット	a線	B 線	y線		
廃棄体内水	C	0.5	1		
パッケージ内モルタ ル自由水	評価	対象外	1		

> 混合率(水の割合)

	充填材混	合率による放射	対線エネルギー付 与割合				
ターゲット	α線	6線	y線				
廃棄体内水	0(月 1(月	開口前) 開口後)	0(開口前) 1(開口後)				
パッケージ内モ ルタル自由水	評価	Б対象外	0.21(開口前) 0.22(開口後)				

7	名称	廃棄体領域 (評価点1)	パッケージ内モル タル(評価点2)	パッケージ部材 (評価点3)	人工バリア材
_ _	物質	ハル等圧縮体 (ジルカロイ及び SUS)	セメント モルタル	炭素鋼	セメント、ベントナイト、 炭素鋼、等
	水の放射線 分解の有無	地下水が流入する までは発生しない	0	×	冠水した状態であ れば発生する
2	透過率[·]	0.693	0.281	0.0226	0.00344
	遮蔽計質ツ-	ール・占減衰精分	メリード QAD	-CGGP2R	

水の放射線分解によるガス発生量の評価

評価条件の設定

水素ガス発生量=G値×放出エネルギー×エネルギー付与率

評価位置	キャニスタ内			廃棄	体パッ	ッケージ	人工バリア		
線種	α	β	Ŷ	α	β	γ	α	β	Y
付与率 (0y≦T≦325y)	0.5	0.5	0.693	0	0	0.059	0	0	0.001
付与率 (325y≦T)	0.5	0.5	0.693	0	0	0.062	0	0	0.001

※キャニスタ内で水の放射線分解が進行するのはT=25y以降

※廃棄体パッケージで水の放射線分解が進行するのはT=25y以降

※人工バリアで水の放射線分解が進行するのはT=50y以降

評価位置	キャニスタ内			廃棄	ッケージ	人エバリア			
線種	α	β	Y	α	β	γ	α	β	Y
付与率 (0y≦T≦325y)	0	0	0	0	0	0.059	0	0	0.001
付与率 (325y≦T)	0.5	0.5	0.693	0	0	0.062	0	0	0.001

※ キャニスタ内で水の放射線分解が進行するのはT=325y以降

※ 廃棄体パッケージで水の放射線分解が進行するのはT=25y以降

※人工バリアで水の放射線分解が進行するのはT=50y以降

水の放射線分解によるガス発生量の評価

評価結果:水の放射線分解による<u>廃棄体パッケージ1体</u>あたりの水素ガス発生量 【キャニスタの寿命不考慮】

RUMC

 初期(T=25y)から、廃 棄物(ハル/エンドピー ス)からの水素ガス発生 が卓越する。

- 25≦T≦325yの間は、廃 棄体パッケージモルタル からの水素ガス発生が 卓越する。
- T=325y以降は、キャニ スタ内にも水が流入し、 廃棄物(ハル/エンドピ ース)からの水素ガス発 生が卓越する。

金属の嫌気性腐食及び水の放射線分解によるガス発生量

評価結果:<u>坑道(157.55m)1本</u>あたりの水素ガス発生量(放射線分解/金属腐食統合) <u>【キャニスタの寿命不考慮】</u>

<u>【キャニスタの寿命=パッケージの寿命】</u>

- ●評価期間を通じて、ほぼ、(放射 線分解によるガス発生量)>(金 属腐食によるガス発生量)
- 廃棄体パッケージ開口(T=325y)までに、廃棄体パッケージ内の水分が枯渇することはない。
- T=325yで廃棄体パッケージが 開口し、キャニスタ内部にも地下 水が流入することで放射線分解
 /金属腐食が増大。

● エンドピースは、8,825yで消失。

廃棄体パッケージ充填材を対象とした ガス発生量の低減対策

セメント系充填材からの放射線分解による水素ガス発生

閉鎖後数百年程度の放射性物質の閉じ込め性能が必要な廃棄体パッケー ジBにおける内部充填材の仕様の検討

セメント系材料(セメントペースト、モルタル、コンクリート)を対象 とする場合、セメント中の水の放射性分解による水素ガスの発生の影響 を考慮しなければならない。

◆セメント系充填材からの放射線分解による水素ガス発生量を見積もるために、セメント・骨材の種類、配合、乾燥条件等の異なるセメント系材料の照射試験によりガス発生挙動を把握しG値を評価する。

◆放射性分解による水素ガスの発生要因を 踏まえ、水素ガス発生の抑制が可能なセ メント系内部充填材の仕様と施工方法を 提示する。

セメント系材料の照射試験

照射試験 比較項目 項 条件 日 ・モルタル⇔コンクリート コバルト60 (Co-60) 線源 ・セメント・骨材の種類 $(1 \text{ k Gy/h} \times 5 \text{ h})$ 5 k Gy 吸収線量 高純度空気 雰囲気ガス ・配合(W/C, S/C) 室温 照射時温 ・乾燥条件 水素 測定項目

・モルタル試料(配合、乾燥条件など)

照射試験での照射イメージ(コンクリート試料)

		1 (10	— `			0.0	- /							線源 新生活 試料台
计约么		試料条件									自由水	結合水	全水分	1-1-12/2
ወሓተተገጋ		セメント	(C) '	骨材 V	V/C	S/C	養生	E・材齢	乾	燥条件	%	%	%	
OPC-モルタ	111	OPC	1	砕砂 0	.45	2				表乾	10.1	6.3	16.4	A REAL PROPERTY AND A REAL
OPC-モルタ	112	OPC	1	砕砂 0	.45	2	20°C	±+≴式 /\\\/	50)°C 6h	6.1	6.2	12.3	The second secon
OPC-モルタ	113	OPC	1	砕砂 0	.45	2	200.	、土」1710代477	80)°C 6h	1.4	6.2	7.6	and the second se
OPC-モルタ	114	OPC	1	砕砂 0	.45	2			80	°C 24h	1.0	6.1	7.1	照射試験の状況
OPC-モルタ	· 1L5	OPC	1	砕砂 0	.60	3	20°C.	、封緘4W		表乾	9.9	5.1	15.0	
OPC-モルタ	· JL6	OPC	3	眭砂 0	.45	2	20°C	±+≴式 /\\\/		表乾	9.0	5.1	14.1	\prec \checkmark
OPC-モルタ	117	OPC	3	珪砂 0	.60	3	200.	、土」和以牛VV		表乾	8.5	4.2	12.7	~
FAC-モル	タル OI	PC : FA=	7:3	砕砂 0	.45	2	20°C			表乾	11.2	4.4	15.6	照射試験後に、照射容器
BFSC-モル	タル OF	C : BFS	=3:74	砕砂 0	.45	2	200.	、 到 税 4 4 V		表乾	11.6	4.1	15.7	内の刀人を具空ン人テム 玄内へ移行させ ガフク
	, I I – K	. =_1' ⊻अ	(而コ ~	<u>с</u> т	与临了	攵 /叶	·+> L	")						ロマトグラフィーにより
• / /	ו-ע	、ロバイナ		コ、 キ	ム除き	未1十	-7 C	_)						H ₂ ガス成分を測定
	目標	目標	WIC	sla	ļļ	位量	(kg/m ³	3)			白山水	結合水	全水分	
試料名	(cm)	空丸重 (%)	(%)	(%)	W	С	S	G ^{養生}	・材齢	乾燥条件	ашл %	%	%	
OPCコンク		4.5						20°0	++ %=	表乾	5.2	2.9	8.1	
<u>- ワート()</u> OPCコンク	18±2.5	4.5 ±1.5	45	44.0	170	362	769	1001 20 0	、 到 iiik W	80°C、	0.4	2.9	3.3	

RWMC

セメント系材料の照射試験

- ⇒セメントや骨材の種類、配合の違いによる水素 ガス発生量の明確な差異は認められなかった。
 ⇒モルタル及びコンクリートでもペーストの結果 と同様に自由水量の増加に伴い水素発生量が増 加し、使用したセメント種類が異なっていても 概ね同一の直線関係で整理できる。
- ⇒セメント系材料(に含まれる水)のG値(G_{H2}(fW))は、セメント及びモルタルともに、自 由水量10mass%以上では水のG_{H2}値=0.45にほぼ収 まる。

自由水量と水素ガス発生量の関係

22

内部充填材の施工時のガス発生量低減対策の検討

廃棄体パッケージ容器内への、廃棄体と内部充填材の収納 (a)後打設:容器内部に廃棄体を設置し、充填材を打設 製作時の技術的な観点 長期的な観点 廃棄体周囲に隙間が生じない。 ・容器内は一体化(蓋直下は除く) 利 利 核種の収着が期待できる(安 点 点 全評価) 全工程が放射線環境下 ・短期/長期的な変質(熱的・ 懸念 懸念 化学的) 打設時の廃棄体の浮上り防止 充填材打設 廃棄体とともに乾燥作業 充填部に残存する水分の影響 養生 廃棄体挿入 脱水 (炉乾燥) (b) 先打設: 容器内部に予め充填材を打設し、 廃棄体を挿入 製作時の技術的な観点 長期的な観点 容器と充填材は一体化 打設後に乾燥工程可能 利点 利点 核種の収着が期待できる(安 打設作業は非放射線環境 全評価) ・短期/長期的な変質(熱的・ ・ 炉乾燥の大型化、品質管理 懸念 懸念 中子設置 充填材打設 養生 廃棄体挿入 化学的) 脱水 (炉乾燥) ・隙間の取合(廃棄体-充填材) • 隙間残存(充填材-廃棄体) (c) プレキャスト:製作済みの充填材を容器に設置し、廃 長期的な観点 製作時の技術的な観点 棄体を挿入 乾燥作業時の他部材への影響なし 核種の収着が期待できる (安) 利点 利 全評価) 充填体挿入作業は非放射線環境 点 充填材の乾燥、品質管理が容易 賞間の取合 ・短期/長期的な変質 (容器-充垣体、充 懸念 懸念 隙間残存(容器-充填体、充 填材-廃棄体) 廃棄体挿入 PCa充填材設置 脱水 (炉乾燥) プレキャストセメント系充填材の製作時 (乾燥工程)のガス発生対策の確立と実 規模製作試験での確認

プレキャスト内部充填材完成イメージ図

RWMC

23

内部充填材の乾燥時の水分逸散量の推定

RUMC

乾燥工程時の水分逸散量(残存水分量)の推定するために、水セメント比、乾燥条件などをパラ メーターとしたコンクリートの要素試験体による水分逸散挙動に関する試験を実施。

24

乾燥により自由水量を減らした内部充填材のガス発生量の評価

解析ケースの設定

	廃棄体パッ	ケージモルタ 量	自由水のモル数	
解析ケース	体積割台	ት [vol %]	重量	[mol/package]
	冠水前	冠水後	[kg/package]	
標準ケース (昨年度実施)	21	22	571	31734. 6
解析ケース1-1	15.3	16.3	350	19421.6
解析ケース1-2	10	11	228	12693.9
解析ケース1-3	3.02	4.02	69.0	3833.5
解析ケース1-4	0.1	1.1	2.28	126.9

乾燥により自由水量を減らした内部充填材のガス発生量の評価

評価結果:<u>坑道(157.55m)1本あたり</u>の水素ガス発生量(放射線分解/金属腐食統合) <u>【キャニスタの寿命=パッケージの寿命】</u>

5. 人工バリアとそのガス移行挙動のモデル化

ガスの発生・移行が核種移行挙動に及ぼす影響の程度の把握

28

Impact assessment of generated gas on the exposure dose

線量評価

発生ガスの解析評価

緩衝材外側への排水量 (Nm3/m/yr)

より確からしいガス移行解析モデルの構築

ガス発生・破過に伴う排水量

ガス発生・破過に伴うガス圧と累積排水量

発生ガスの解析評価

ガス移行解析による排水量の結果に基づき、放射性核種を含む汚染水の排出量を赤破線(2.2 Nm3/m/y outside the buffer for 7 years (from 6 to 13 years).)のように設定し、核種移行解析へ 受け渡す。

Case1 ガス発生・破過に伴う排水量

ガス発生・破過に伴うガス圧と累積排水量

発生ガスの解析評価

ガス移行解析による排水量の結果に基づき、放射性核種を含む汚染水の排出量を赤破線(1.6 Nm3/m/y outside the buffer after 6th year.)のように設定し、核種移行解析へ受け渡す。

Case2 ガス発生・破過に伴う排水量

ガス発生・破過に伴うガス圧と累積排水量

核種移行解析により、生物圏での線量率への発生ガスによる影響を評価。

このような発生ガスの影響評価をより精度良く実施するために、人工バリア中のガス移行(2相流 としての移行パラメータ)・破過挙動及び破過後のベントナイトの自己修復性を試験で確認し、モ デル化することが重要!

RWMC

ガス移行挙動とそのモデル化の検討の目的

◆処分施設構成に対応したガス・地下水移行評価モデルの高度化・解析評価 ◆ガス・地下水移行評価に基づく汚染水押出し水量の設定と核種移行評価

目的に向けての近年の取り組み

過去(~2017)に要素試験で取得した、人工バリア(ベントナイト 材料)中のガス・水透過特性データ(二相流パラメータ)の、三次 元拡大系におけるガス移行挙動評価への適用性の確認を行うととも に、再破過・自己修復現象発生時の透過特性の変化を確認する。 そのために、実処分施設にて想定される透過特性への影響要因を模 擬した、モックアップ試験を実施する。

.構造躯体

·廃棄体

支保工

モックアップ装置によるガス移行政権

- ・要素試験より取得した透過特性データ(二相流パラメータ)の、三次元拡大系に おけるガス移行挙動評価への適用性の確認
- 三次元的な影響を確認できるよう、実処分施設の形状的特徴を有し情報取得のための計測器設置が可能な寸法を有することと再冠水試験(試験体の飽和の確認)およびガス注入試験(ベントナイト中でのガス、水の移行挙動の確認)が、現実的な試験期間内(それぞれ概ね1年以内)で実施できることを考慮した規模で装置を構築

KWINC

試験装置 高さ: 550mm 幅: 600mm 試験体 高さ: 320mm 幅: 300mm

34

再冠水試験~ガス注入試験における透過特性評価項目の整理

RWMC

モックアップ試験の実施内容

再冠水試験により、ベントナイト試験体の飽和過程におけ る挙動把握とガス注入試験の初期状態(飽和状態)のセッ ティングを行う。

試験体の飽和を確認後、試験体へのガス注入を破過に至る まで経時的に昇圧しながら継続し、透過特性データ(気液 二相流パラメータ)を取得、供試体中のガス移行挙動を評 価する。

再破過試験では、一度破過を経験した供試体を再冠水させ 再びガスを注入する。再冠水に伴う、ベントナイト試験体 の自己修復現象の評価も実施する。

再破過後の試験体の解体調査により、破過あるいはガスの 移行に伴うベントナイト試験体の状態の変化、試験体が持 つ不均質性等を評価する。

RUMC

一回目の試験における破過発生前後の注入ガス圧と各面からのガス排出挙動

再破過試験における破過発生前後の注入ガス圧と各面からのガス排出挙動

RUMC

一回目の試験における試験体からの 破過前後のガス排出挙動(上図)と再 破過試験における破過前後のガス排出 挙動(下図)より、どちらの試験にお いても、破過発生時に同一方向面(試 験体左面)からのガス排出が卓越して いる。

破過現象観測時の注入ガスの有効ガ ス圧は、要素試験のときのガス圧より も低い結果となった。(要素試験: 1.3MPa、モックアップ試験:0.6MPa)このことから現実的なガス移行挙動 の評価のためには三次元的効果を考慮 する必要があるといえる。

また、モックアップ試験結果に対し て、一次元要素試験から得られた透過 特性値をフィッティングすることによ り2相流パラメータを同定した結果、 一次元要素試験で得られたパラメータ より、透気しやすい傾向の2相流パラ メータが得られた。 モックアップ試験体の解体調査の結果(試験体の目視観察、含水比調査)

試験体頂面を目視観察し、亀 裂等が存在しないことを確認。 解体した試験体の含水比調査 より、主要なガス移行経路となっていると考察した左面方向の 含水比が相対的に小さくなって いる。また、試験体下部の含水 比は大きくなっている。このよ うな現象は、ガスの移行により 押し出された間隙水が重力(浮 力)の影響で試験体下部に移動 したためだと推定される。

・モックアップ試験により、一次元要素試験の際に は見られなかったガスや水の分布や移行挙動への三 次元効果による影響が観測された。 38

モックアップ試験(再破過試験、解体調査)のまとめ

ベントナイトの 自己修復機能	○ガス注入試験(1回目)と同じガス圧で再破過したこ とから、一度破過したことが致命的な欠陥とならず、再 飽和に伴うベントナイトの自己修復機能により透過性が 回復したと考えられる。
破過の発生方向	○再破過試験においても、ガス注入試験(1回目)と同 一の面方向から破過が発生したことから、その方向が他 の方向と比較して破過が発生しやすい特性を有していた と考えられる。試験体の有する不均質性や3次元的な応 力の分布に伴う透過性の違いが結果に影響していると考 えられる。
含水比分布	○ガス注入試験の主要なガス移行経路の方向と解体調査 の含水比調査の結果より、ガスの浸入により間隙水が押 し出されて含水比が低下した方向から、ガス排出が発生 していると考察。

ガス移行挙動とそのモデル化

Saturation phase

モックアップ試験結果に基づくガス移行モデルに適用する2相流パラメータの異方性につい ては引き続き検討中。

◆ TRU廃棄物(グループ2;ハル・エンドピース)処分場でのガス発生量の評価

廃棄体1体当たりの放射線分解によるガス発生量は金属腐食によるものよりも多いことが見込まれる。

◆ 廃棄体パッケージ充填材を対象としたガス発生量の低減対策

- セメント系材料の放射線分解による水素ガスの発生量は、セメントや骨材の種類、配合の違いによらず、自由水量と相関があることが明らかになった。
- このことから、セメント系充填材製作の乾燥工程において自由水量を減らすことで水素ガス発生量の低減が可能である。

◆ 人工バリアのガス移行挙動とそのモデル化

- (従来の要素試験に基づく)ガス影響評価からガス発生やそれによるベントナイト自己修復性が線量率のピークに影響することが示唆され、より精度よいガス移行モデルの構築が必要。
- モックアップによるガス移行試験により、1次元要素試験に比べ破過圧が低く なることやガス相と水相の3次元的な移行挙動を確認した。2相流モデルの異 方性やこのモデルに基づくガス影響評価は今後実施する予定。また、再破瓜試 験では、再飽和によるベントナイト材料の自己修復性を確認した。

ご清聴ありがとうございました

放射性廃棄物地層処分における長期の地下水動態評価に 係る地下水年代測定技術の最近の進展 (Recent Progress in Groundwater Dating Techniques for Assessing Long-Term Groundwater Dynamics in Geological Disposal of Radioactive Waste)

電力中央研究所

(Central Research Institute of Electric Power Industry)

中田 弘太郎*

Kotaro Nakata

長谷川 琢磨

Takuma Hasegawa

R電力中央研究所

本日発表の内容:Contents

◆研究の背景: Background of our research

- ◆地下水年代とその測定原理: Groundwater dating and the principals
- ◆適用事例: Recent case study
- ✓⁸¹Krによる年代測定: Groundwater dating with ⁸¹Kr
- ◆まとめ:Summary

◆研究の背景: Background of our research

II電力中央研究所

背景: Background of the research

◎ 地層処分の概念: Concept of Geological Disposal

◎ 人間が影響を受ける可能性: Possible Scenarios

- 地層の隆起で処分場が地表付近に
- 多重バリアシステム:人工+天然バリア
- 核種が地下水に溶出、地下水の流れとともに人間の生活圏へ: Groundwater Scenario

R 電力中央研究所

地下水年代とは? What is groundwater age?

地下水の年齢:地下水が地下に入ってからの時間→「地下水年代」 Groundwater age: the residence time of GW since recharge

地下水年代の廃棄物処分への利用 <u>Use of groundwater age for HLW disposal</u>

◎ PAの醸成: Forming of public acceptance

◎ モデル評価への適用: Application for model calibration

直感的に地下水が動きにくいことを理解 We can "feel" groundwater is old

IR 電力中央研究所

長期・広域の地下水流動を理解

The regional flow of groundwater during the long period can be assumed from age of groundwater

◆地下水年代とその測定原理: Groundwater dating and the principals

R電力中央研究所

地下水年代をどのように評価するか? How to evaluate the groundwater age?

地下水の年代の推定方法 ◆地下で増えるものを利用: ヘリウムガスなど Use of something increase in subsurface ◆地下で減るものを利用: 天然の放射性核種 Use of something decreases in subsurface ◆過去の気候変動なども利用できることも Other methods: Use of paleo-climate etc.

雷力中央研究所

地下中で増えていくものを利用

Use of something increase in subsurface

代表例: ヘリウムガス (Representative example Helium)

ヘリウムガスとは?

・特性(characteristics):他の物質と反応しない(chemically inert)

・発生(origin in subsurface):岩石に含まれるウラン/トリウムの反 応から発生(generated from reactions of U and Th)

古い地下水ほどHe濃度が高くなる、年代が古いほど分析が容易

The concentration of He increase with increase of groundwater age

地下水のヘリウム濃度、岩石からのヘリウムの発生速度がわか れば、地下水年代を推定できる

Groundwater age can be estimated from concentration of He in GW and U and Th concentrations in rocks

ℝ電力中央研究所 地下水年代の評価方法:減っていくもの Use of something increase in subsurface

例: 天然の放射性核種(14C・⁸¹Krなど)

大気中の放射性核種 →宇宙線による生成と崩 壊がバランス

¹⁴C stable in air

地下中の放射性核種→生 成がなく、「半減期」に従っ てなくなる

¹⁴C decreases according to half-life in subsurface

濃度と半減期から年代を 推定できる (age can be estimated from concentration and half-life)

R^{電力中央研究所} 地下水年代の評価方法:そのほか Other methods

冷蔵庫のコーラ

vs 室温のコーラ

例: 昔の気候変動を利用 Use of Paleo climate

- 気温が低い:水にガスが溶けやすい。
- ・気温が高い:水にガスが溶けにくい

ガスの濃度が高い箇所は、気温が低いときに地下に入った水である可能性 High concentration of gases may be caused by low temperature

© CRIEPⅠ 1ガラフ:中田ほか、電力中央研究所報告N10036から引用

適用事例: Recent case studies ✓⁸¹Krによる年代測定: Groundwater dating with ⁸¹Kr

IR 電力中央研究所

⁸¹Krの特徴 Characteristics of ⁸¹Kr

◎⁸¹Krの特徴(その1)

 ・放射性希ガス:化学的反応性低い
 Radioactive noble gas: it is not involved in geochemical reactions ・半減期:22.9万年→10~100万年程度の地下水年代評価可能 Half-life 2.29x10⁵ years: it can be used for dating for 1x10⁵ to 1x10⁶ years ・近年分析手法の開発により、現実的なサンプル量で分析が可能となった Development of measurement method allows us to measure ⁸¹Kr with relatively small amount of sample

Atom Tram Trace Analysis (ATTA)

アメリカ・中国・オーストラリア の研究機関で分析可能 It can be conducted in US. China and Australia 13

⁸¹Krの有用性 Usefulness of ⁸¹Kr

◎⁸¹Krの特徴(その2)

・地表では発生源があるが、地下では発生源が(ほとんど)ない
Production of ⁸¹Kr is almost negligible in subsurface

地表の水・若い地下水浸入の指標となる ⁸¹Kr can act as an indicator of intrusion of surface/young water

⁸¹Krの利用(日本での課題)Use of ⁸¹Kr (Issues in Japan)

◆ 日本では地下水におけるメタン濃度が高いケースがある
Concentration of methane is sometimes high in Japan

◆ メタンによりKrの濃度が薄まっている→大量のガスが必要 Concentration of Kr is diluted by methane

◆ メタンにより分析機関への送付が難しくなる

High concentration of methane makes the transportation difficult

地下水から抽出したガスからメタンを除去し、Kr濃度を高める 技術を開発させる必要がある Development of removal method of methane from gas samples is required

メタンの減量方法の検討 Removal method of methane

3つの手法の検討

Development of removal method of methane is required

手法	利点(merit)	欠点(demerit)			
<mark>メタンの酸化</mark> Oxidation of methane	詳細はのちほど (Mentioned later)	二酸化炭素・水を除去する必 要 H ₂ O and CO ₂ have to be removed			
チタンへの吸着 Sorption of methane on titanium	多くの反応性のガスを 除去できる Many kinds of gases can be removed	真空度が上がる分、コンタミし やすい。チタン表面状態の制 御が難しい (High vacuum results in contamination. Controlling the surface conditions of Ti is difficult)			
冷却トラップ Sorption on cold trap	高温での加熱が不要 High temperature is not required	回収率低い Low recovery			

メタンの減量方法の検討 Removal method of methane

メタンの酸化→トラップ法

Development of removal method of methane is required

□ 酸化銅燃焼炉(combustion furnace):メタンを二酸化炭素と水に酸化
□ モレキュラーシーブ(molecular sieve):水をトラップ

□ 二酸化炭素吸収剤入りガスバッグ(gas bag with CO₂ absorber): 二酸 化炭素をトラップ

輸送が容易

Be transported easily

メタンの減量方法の検討 Removal method of methane

【北海道幌延地域のガスへの適用例

(Application to gases obtained in Horonobe, Hokkaido]

サンプル (Sample)		<mark>容量</mark>	<mark>容量</mark> ガス濃度(%) Concentration					Kr濃度	
			H ₂	02	N ₂	CH ₄	CO ₂	(ppm)	
13-350LGE-M01	Before treatment	<mark>40L</mark>	0.0	0.6	2.6	<mark>89.4</mark>	5.9	0.04	
	After treatment	<mark>0.46L</mark>	0.0	51.0	<mark>48.6</mark>	0.1	0.4	3.06	92%

- ・主要成分(Main component):メタン(Methane)→窒素(N2)
- ・サンプルの体積(Volume of sample):40L→0.46L
- ・Kr回収率が高い(high Kr recovery)→CO₂がキャリアの役割(CO₂ acts as carrier gas)
 - ▶ 貴重なサンプルの損失がない

(We do not lose important samples)

R電力中央研究所

幌延地域への適用 Application to groundwater in Horonobe

■ 電力中央研究所

幌延地域への適用 Application to groundwater in Horonobe

⁸¹Krまとめ Summary of ⁸¹Kr

◆ ⁸¹Krの特性:その性質から、天水浸入の指標として有効 Characteristics of 81Kr:It can provide information about intrusion of surface/young groundwater

◆ 現時点での課題:メタンにより分析機関への安全・確実な輸送が阻害される可能性がある→メタンを低減し、Kr濃度を高める手法を開発
Methane can be a big issue for safety transportation and
measurement of ⁸¹Kr→ The method that can reduce the amount of
methane has been developed

 ◆ 幌延地域の地下水への適用:250mに比較的若い地下水が流れ込んだ 可能性を示唆(Cl濃度等と合致:更なる検討必要)
Application to Horonobe groundwater : The results indicated young groundwater may flow into 250m (further investigation is required)

日本の地下水で⁸¹Krを適用し、年代評価ができることを確認した It was confirmed that ⁸¹Kr can be used as a tracer of groundwater age

まとめ Summary

◆ 地下水年代:長期・広域の地下水流動に関する情報・解析結果の妥当性検証に有効

Groundwater age can provide useful information about regional flow of groundwater during long period: it can be applied to calibration of flow model

◆ 地下水年代:地下中で増えていくもの、減っていくものに着目し、地下水の 年を評価する手法

Groundwater age is estimated from something increase/decrease in subsurface

 ◆ 最新の事例(⁸¹Krの利用):81Krは天水由来の地下水の浸入評価に有効。メ タンを除去し⁸¹Krを分析する手法を開発→幌延地域での有効性を示した
Recent case study (use of 81Kr): 81Kr can indicate the inclusion of young groundwater into old one. The method for removing methane from gas samples has been developed→ ⁸¹Kr has been applied to groundwater in Hornobe area

II電力中央研究所

謝辞

◆ここで発表した成果は経済産業省からの受託事業「高レベル放射性廃棄物等の地層処分に関する技術開発事業(JPJ007597)(岩盤中地下水流動評価技術高度化開発(令和3年度))」において得られたものである。 ◆サンプル採取等において、JAEAの宮川和也氏に多大な貢献をいただいた。

Numerical assessment of a hybrid approach for simulating three-dimensional flow and advective transport in fractured rocks

Chuen-Fa Ni, Ph.D., P.E.

Professor & Director

Center for Environmental Studies, National Central University Graduate Institute of Applied Geology, National Central University

國立中央大學 環境研究中心 Center for Environmental Studies

Quote:

In God we trust, all others must bring data.

If you don't know how to ask the right question, you discover nothing.

-- William Edward Deming (October 14, 1900 – December 20, 1993)

Key issues

The KBS-3 concept for disposal of spent nuclear fuel(SKB, 2011)

Conceptual fracture domain model

Conceptual hydrogeological DFN model (connected open fractures)

Fractures are not allowed to intersect deposition holes in accordance with the Extended Full Perimeter Intersection Criterion (EFPC). (Munier 2006)

Challenge with scale interactions

Figure 3-6. Illustration of embedding between DFN and CPM sub-models. A finite-element CPM mesh is shown on the left. The right hand surface is intersected by a single fracture plane. Extra equations are used to link the DFN to the CPM.

Figure 3-18. Schematic illustration of continuity of DZs across a CPM/DFN interface in a ConnectFlow model. The DFN region is to the right with a CPM grid to the left.

(Joyce et al., 2010)

Objectives

- Develop a DFN &ECPM (Hybrid-domain) model for simulating flow and advective transport in fractured rock systems.
 First phase: Flow and advective transport
- Evaluate potential releasing pathways for radionuclides to leave the canisters, i.e., Q1 to Q3 paths.

Numerical model – the concep

Two fractures with one collinear line

Fractures: triangular elements with arbitrary fracture apertures

 $\nabla \cdot [K(\mathbf{x})b(\mathbf{x})(\nabla h(\mathbf{x})] + Q(\mathbf{x}) = 0$

Matrix: Tetrahedral elements with physical flow (or transport) properties

Fractures and the 2D and 3D meshes for the proposed hybrid model.

Numerical model – the concep

Particle tracking for advective transport

 $\frac{dt}{dt} = u(\mathbf{x}, t)$

Ray-Plane test: determine element faces & intersection points.

- Point 3D velocities are calculated based on the velocities at nodes of the element face. (interpolation)
- 2. Traveling path follows the trajectory of the velocity vectors at the point on the element face.

Model tests

- The models
 - DFN → FracMan
 - ECPM→DarcyTools
 - Hybrid-domain HD (this study
- Workflow
 - Mesh generation
 - Flow simulations
 - Particle tracking
- Two test cases
 - 3 intersected fractures
 - Fractures & deposition hole (DH)

HD: 2D triangular and 3D tetrahedron elements are 9,147 and 290,324, respectively ECPM model: 131,072 cells with32, 64,

and 64 in x-, y-, and z-directions

DFN: 12,624 elements

Fractures: FAB file from FracMan software

Not to scale	

Parameters	Case I	Case II
Fracture transmissivity (m ² /s)	5.0×10 ⁻¹⁰	5.0×10 ⁻⁷
Matrix hydraulic conductivity (m/s)	1.0×10 ⁻¹⁰	1.0×10 ⁻¹⁰
Deposition hole hydraulic conductivity (m/s)	-	1.0×10 ⁻¹⁰
Fracture aperture (m)	1.0×10 ⁻⁴	1.0×10 ⁻¹
Fracture porosity (-)	4.0×10 ⁻¹	4.0×10 ⁻¹
Rock matrix porosity (-)	5.4×10 ⁻³	5.4×10 ⁻³
Convergence criteria (m)	1.0×10 ⁻⁸	1.0×10 ⁻⁸
Particle numbers (-)	1,000	1; 48 **

** There is a subcase with 48 particles for Case II. 9

Flow simulations

(a)

16

14

12

10

z(m)

(c)

14

12

10

z(m)

Statistics

Parameters		ECPM	HD	DEN	HD
			(fractures and matrix)	DIN	(fractures only)
	Mean (m)	5.61	6.38	5.51	5.38
Traco	STD (m)	0.35	1.01	0.63	0.37
langth	CV	0.062	0.158	0.114	0.069
length	Min. (m)	5.07	5.12	5.11	5.10
	Max. (m)	6.39	10.48	9.04	7.77
	Mean (s)	4.0×10^{8}	2.1×10^8	3.2×10^{6}	3.9×10^{6}
T1	STD (s)	2.3×10^8	6.4×10^{7}	4.7×10^{6}	2.6×10 ⁶
I ravel	CV	0.58	0.30	1.47	0.67
time	Min. (s)	6.4×10^{7}	1.4×10^{5}	1.8×10^{6}	1.8×10 ⁶ 🗪
	Max. (s)	1.2×10^{9}	6.3×10^{8}	5.6×10^{7}	3.1×10 ⁷
	Mean (m/s)	2.0×10 ⁻⁸	1.5×10 ⁻⁷	2.4×10 ⁻⁶	6.5×10 ⁻⁶
Velocity	STD (m/s)	1.4×10^{-8}	1.3×10^{-7}	6.2×10 ⁻⁷	6.3×10 ⁻⁷
	CV	0.70	0.87	0.26	0.10
	Min. (m/s)	5.1×10^{-9}	8.8×10 ⁻⁹	2.0×10^{-7}	2.0×10 ⁻⁷
	Max. (m/s)	8.0×10 ⁻⁷	3.6×10 ⁻⁵	2.8×10 ⁻⁶	-2.9×10^{-6}

ECPM & HD

A particle released at the highest velocity location

16

14 12 10

8

Parameters		ECPM model	HD model
	Mean (m)	10.69	9.07
	STD (m)	3.16	2.74
Trace length	CV	0.296	0.302
	Min. (m)	7.25	5.85
	Max. (m)	15.70	15.10
	Mean (s)	9.70×10 ⁹	4.25×10^{9}
	STD (s)	2.40×10^{9}	1.05×10^{9}
Travel time	CV	0.247	0.247
	Min. (s)	6.50×10^{9}	2.69×10^{9}
	Max. (s)	1.55×10^{10}	7.10×10^9
	Mean (m/s)	1.09×10 ⁻⁹	2.18×10 ⁻⁹
Velocity	STD (m/s)	1.56×10 ⁻¹⁰	1.10×10^{-9}
	CV	0.143	0.505
	Min. (s)	8.31×10 ⁻¹⁰	1.15×10^{-9}
	Max. (s)	1.37×10^{-9}	4.33×10 ⁻⁹

Implementation: A case with practical scale and complexity

Objectives

- Implementation of HD model for practical scale & complexity
- Conduct flow and advective transport in fractured formation (FAB)
- Search three main pathways, Q1, Q2, & Q3
- Consider layout, main tunnel(MT), deposition tunnel(DT), deposition holes(DH), and excavation damage zone(EDZ) STL(STereoLithography)
- Evaluate transport properties

Main rock formations F 70m above and below

	FDMA-	FDMB.		
rracture Domain-	Elevation (depth below surface, m) $< 70 \text{ m}_{\odot}$	Elevation (depth below surface, m) > 70 m.		
	Cluster 1 = (198, 18), Fish distribution ($\theta, \kappa = 18$), $P_{32,rel}=26\%$.	Cluster 1 = (65, 17), Fish distribution ($\theta, \kappa = 20$), $P_{32,rel} = 15\%$		
	Cluster 2 = (155, 4), Fish distribution ($\theta, \kappa = 15$), $P_{32,rel} = 24\%$	Cluster 2 = (344, 38), Fish distribution ($\theta, \kappa = 18$), $P_{32,rel} = 24\%$		
	Cluster 3 = (264, 23), Fish distribution ($\theta, \kappa = 16$), $P_{32,rel}=18\%$	Cluster 3 = (281, 29), Fish distribution ($\theta, \kappa = 16$), $P_{32,rel} = 30\%$.		
Fracture clusters.	Cluster 4 = (98, 81), Fish distribution ($\theta, \kappa = 11$), $P_{32,rel} = 32\%$.	Cluster 4 = (174, 22), Fish distribution ($\theta, \kappa = 17$), $P_{32,rel} = 10\%$		
Pole Trend, Pole Plunge	a l	Cluster 5 = (175, 75), Fish distribution ($\theta, \kappa = 19$), $P_{32,rel}=21\%$		
	Fisher distribution $f(\theta, \kappa) = \frac{\kappa \sin \theta e^{\kappa \cos \theta}}{e^{\kappa} - e^{-\kappa}};$			
	heta = the angular displacement form the mean pole vector -			
	$\kappa =$ a concentration parameter of Fisher distribution.			
Eractura intensity.	$P_{32} = 2.4$	$P_{32} = 0.3$.		
racture intensity.	P_{32} =Area of fractures per unit volume of rock mass (volumetric intensity,	m ⁻¹),		
	Power law : $k_r = 2.6$, $r_0 = 0.1 m$, $r_{min} = 4.5 m$, $r_{max} = 564 m$.	Power law : $k_r = 2.6$, $r_0 = 0.1 m$, $r_{min} = 4.5 m$, $r_{max} = 564 m$.		
	$P(R \ge r) = \left(\frac{r_0}{r}\right)^{k_r}, P_{32}(r_{min}, r_{max}) = \frac{[r_{min}^{k_r-2} - r_{max}^{k_r-2}]}{r_0^{k_r-2}} P_{32}(r_0, \infty).$			
	R is the fracture radius.			
Fracture size-	r_0 is the minimum radius value.			
	r is any fracture radius between r_0 and ∞			
	k_r is the exponent of fractal dimension, or the "fracture radius scaling exponent" (La Pointe, 2002, p381)			
	$P(R \ge r)$ is the probability that a circular-shape fracture with a radius group of the probability that a circular-shape fracture with a radius group of the probability that a circular shape fracture with a radius group of the probability	eater than or equal to r_{e}		
	$P_{32}(r_{min}, r_{max})$ is the volumetric fracture intensity corrected with determined	ned fracture radius between r _{min} and r _{max} ,		
Fracture location-	Stationary random (Poisson) process	Stationary random (Poisson) process		
	$T \rightarrow (A)b \rightarrow (A)b f \rightarrow$	MARIC T = $(1 (100)^b f = D = T = 1)$		
	$I = a_1 \times (r)^2 = a_2 \times (L)^2 \text{ for FracMan}/2$	MAPIC; $I = a_3 \times (L_f / 100)$ for Darcylools.		
Fracture Transmissivity	$\pi r^{2} = L^{2} = (L_{e}/100)^{2}; a_{2} = a_{1} \times (\pi)^{-0.3}$	MAPIC; $I = a_3 \times (L_f / 100)$ for Darcylools. ^{5b} : $a_2 = a_2 \times (100)^b = a_1 \times (\pi)^{-0.5b} \times (100)^b$.		
Fracture Transmissivity $(T, m^2/s)$.	$r = a_1 \times (r)^r = a_2 \times (L)^r \text{ for } rracman,$ $\pi r^2 = L^2 = (L_f/100)^2; \ a_2 = a_1 \times (\pi)^{-1}.$ $r; \text{ radius } (m) \text{ of a disk fracture: } L \text{ equivalent size } (m) \text{ of a source fracture}$	$\begin{array}{l} \text{MAP}(r; \ r = a_3 \times (L_f / 100) \ f \text{ or Darcyhouts}, \\ \dot{b}_i a_3 = a_2 \times (100)^b = a_1 \times (\pi)^{-0.5b} \times (100)^{b_s}, \\ & \text{m: } L_i \text{ obvisical length} (m) \text{ of an intersecting fracture in orthogonal direction} \end{array}$		
Fracture Transmissivity $(T, m^2/s)^2$	$\pi^{r2} = a_1 \times (r)^{r} = a_2 \times (L)^{r}$ for <i>rracMan</i>). $\pi^{r2} = L^2 = (L_f/100)^2; a_2 = a_1 \times (\pi)^{-0.1}$ <i>r</i> : radius (<i>m</i>) of a disk fracture; <i>L</i> : equivalent size (<i>m</i>) of a square fracture $a_1 = 9.0 \times 10^{-9}, a_2 = 6.03 \times 10^{-9}, a_2 = 1.51 \times 10^{-7}, b = 0.7.$	MAPRIC: $I = a_3 \times (L_F / 100) f or Darcyl coils$ $ib_i a_3 = a_2 \times (100)^{b} = a_1 \times (\pi)^{-0.5b} \times (100)^{b_{,c}}$, m; L_f : physical length (m) of an intersecting fracture in orthogonal direction $l_{a_1} = 5.3 \times 10^{-11}$, $a_2 = 3.98 \times 10^{-11}$, $a_3 = 3.98 \times 10^{-10}$, $b = 0.5$.		
Fracture Transmissivity $(T, m^2/s)_{\circ}$ Fracture Aperture $(e, m)_{\circ}$	$\begin{aligned} I &= a_1 \times (r)^- = a_2 \times (L)^- for \ rracMan/,\\ \pi r^2 &= L^2 = (L_f/100)^2; \ a_2 &= a_1 \times (\pi)^{-0.1},\\ r: \text{radius } (m) \text{ of a disk fracture; } L: \text{ equivalent size } (m) \text{ of a square fracture}\\ a_1 &= 9.0 \times 10^{-9}; a_2 &= 6.03 \times 10^{-9}; a_3 &= 1.51 \times 10^{-7}; b &= 0.7,\\ e &= 0.5\sqrt{T_e}. \end{aligned}$	$\begin{array}{l} \text{MAP}(L; \ l = a_3 \times (L_F / 100) \ for \ Darcyl \ ools \\ \text{ib}; \ a_3 = a_2 \times (100)^b = a_1 \times (\pi)^{-0.5b} \times (100)^{b_{\mu}}, \\ \text{nm}; \ L_f: \text{physical length}(m) \ of \ an \ intersecting \ fracture \ in \ orthogonal \ direction \\ a_1 = 5.3 \times 10^{-11}; \ a_2 = 3.98 \times 10^{-11}; \ a_3 = 3.98 \times 10^{-10}; \ b = 0.5 \\ \mu = 0.5 \sqrt{T}. \end{array}$		

(d)

and D# are assumed to be deterministic structures and treated as porous media)

(Yu et al., 2022, in preparation)

Tunnels and deposition holes

(a)

(c)

Flow simulation

of mesh

Intersections

Q1 partially intersected

Floating-point Arithmetic(Cherchi et al, 2020)

Q2 fully intersected case

Path	Туре	Intersection	File name
Q1	Full	160	Q1Full.csv
Q1	Partial	34	Q1Part.csv
Q2	Full	2861	Q2Full.csv
Q2	Partial	0	Q2Part.csv
Q3	Full	109	Q3Full.csv
Q3	Partial	110	Q3Part.csv

Q3 fully intersected case

Particle tracking

Potential paths	Initial flux (m/s)	Location
Q1	6.746797 × 10 ⁻¹²	224.01288, 567.0276, -500.0
Q2	6.746917 × 10 ⁻¹²	223.14775, 567.361, -500.3
Q3	6.746797 × 10 ⁻¹²	220.6712, 570.88324, -496.6415

Travel time t_r Q1=1.30812 × 10¹⁶ (s) Q2=1.30888 × 10¹⁶ (s) Q3=1.77045 × 10¹⁶ (s)

Darcy velocity U_r Q1=6.746797 × 10⁻¹² (m/s) Q2=6.746917 × 10⁻¹² (m/s) Q3=6.746797 × 10⁻¹² (m/s)

Equivalent flux Q_{eq} Q1=2.190107 × 10⁻¹⁶ (m³/s) Q2=1.025728 × 10⁻¹¹ (m³/s) Q3=1.770446 × 10⁻¹⁵ (m³/s)

Travel length L_r Q1=8323.562(m) Q2=8316.176(m) Q3=7664.157(m) **Transport resistance** F_r Q1=6.2745881 × 10¹⁶

 $Q2=6.2783641 \times 10^{16}$ $Q3=5.3679468 \times 10^{16}$

Conclusion

- The study has developed the HD approach for the simulation of advective transport in fractured rocks.
- HD model is flexible in considering the concepts of DFN, ECPM, or both.
- A regional-scale case with objects of a disposal facility was employed to evaluate the developed model.
- Results show that the objects of a disposal facility and predefined DFN could be included in the HD model, and the intersections between disposal facility and fractures has been obtained successfully.

Thank you!

- Email: nichuenfa@geo.ncu.edu.tw
- Tel: +886-3-4227151 ext. 65874
- Fax: +886-3-4263127

The solute encounters a number of transport resistances (Fr) in series. For example in the canister defect scenario for transport from the fuel to the seeping water a nuclide has to diffuse from the fuel through a hole in the canister to the clay buffer, then from the exit of the hole in the canister out into and through the buffer to reach the seeping water in the fracture in the rock. As the nuclide approaches the fracture in the rock it will have to find the narrow fracture. This can also be expressed as a resistance. All these resistances can be expressed as inverse of the corresponding equivalent flowrates.

volume of rock. This is a measure of the potential for retention and retardation of radionuclides within the rock.

The subscript "r" indicates that the PM is calculated in the rock. That is, they only represent cumulative PMs for those parts of paths within the rock and exclude parts of flow-paths that pass through the EDZ or tunnel backfill. PMs are calculated for legs of paths within the EDZ and tunnels, but are computed as separate PMs for each path and distinguish by an "EDZ" or "t" subscript, respectively.

In a DFN representation the PMs are defined as:

1. Travel-time, $t_r = \sum_{f} \frac{e_{if} w_f \partial l}{Q_f}$, where δl is a step length along a path of f steps, each between

a pair of fracture intersections, e_{tf} is the fracture transport aperture, w_f is the flow width between the pair of intersections, and Q_f is the flow rate between the pair of intersections in the fracture.

- 2. Equivalent flux at the release point, U_r , described in more detail below.
- 3. Equivalent flow rate at the release point, Qeq, described in more detail below.
- 4. Pathlength, $L_r = \sum \delta l$.
- 5. Flow-related transport resistance, $F_r = \sum_{f} \frac{2w_f \partial l}{Q_f} = \sum_{f} \frac{2t_{rf}}{e_{rf}}$, where t_{rf} is the travel time in a fracture along the path.

The results from the particle tracking are used to produce ensemble statistics for the performance measures, as well as locating the discharge areas. The ensemble is over the set of 8,031 particle start locations, one for each deposition hole and is in total divided over three blocks; block 1 with 2,158 start locations, block 2 with 3,576 start locations and block 3 with the remaining 2,297 start locations (Figure 3-13). Apart from the work done on the repository layout, no further attempt is made to avoid starting particles in either deterministic fracture zones or high transmissivity stochastic fractures. In reality, such features are likely to be avoided during repository construction, and hence the model may tend to see particles start in a wider range of possible fracture transmissivities than might be encountered in reality.

To avoid particles becoming stuck in regions of stagnant flow, they are not started if the initial flow rate per unit width is less than 1.10-6 m²/y for Q1 and Q2 and the initial Darcy flux is less than $1\cdot 10^{-6}$ m/y for Q3. For Q1 and Q2, flow rate per unit width, q_6 in a fracture is defined as

$$q_f = e_g v = \frac{Q_f}{\sqrt{a_f}}$$
(3-6)

where:

- e_{tf} is the transport aperture of the fracture [m].
- v is the velocity [m/y].
- Of is the volumetric flow rate in the fracture [m³/y].
- a_f is the area of the fracture plane [m²].

For Q3, the Darcy flux, q, is defined as the volumetric flow rate per unit area.

Table 2-2. Summary of reported performance measures.

Performance measure	Description
tr	Travel time in the rock [y].
Ur	Initial Darcy flux in the rock [m/y].
L _r	Path length in the rock [m].
Fr	Flow-related transport resistance in the rock [y/m].
t	Travel time in the tunnels [y].
Ut	Initial Darcy flux in the tunnels [m/y].
L _t	Path length in the tunnels [m].
t _{EDZ}	Travel time in the EDZ [y].
U _{EDZ}	Initial Darcy flux in the EDZ [m/y].
L _{EDZ}	Length in the EDZ [m].

土木学会 エネルギー委員会主催 放射性廃棄物処分技術の最新動向に関する総合シンポジウム

トロトロシ 原子力発電環境整備機構

NUMOにおける地質環境のモデル化技術の 高度化に向けた取組み状況

Current status of NUMO's studies to improve geological environment modeling technology

2022年5月17日(火)

原子力発電環境整備機構

Nuclear Waste Management Organization of Japan

技術部 調査技術グループ

尾上 博則 Hironori ONOE

■ 技術開発の課題

Technical issues

■ トピックス 1: 地質環境特性の長期変遷のモデル化技術の高度化

Topics 1: Improvement of modeling technology for long-term evolution of geological environment

■ トピックス2 : 地下水流動・物質移行モデルの妥当性確認手法の整備

Topics 2: Development of methodologies for validation of groundwater flow and mass transport model

Summary

技術開発の課題 Technical issues

地層処分研究開発に関する全体計画(平成30年度~平成34年度)(地層処分研究開発調整会議,2018)における研究課題

- 包括的技術報告書*1(NUMO-TR-20-01)を作成する過程で明らかとなった課題
- これまでの研究開発過程で抽出された課題
- 国の審議会等*2で抽出された課題
- 科学的特性マップの作成及び提示に際して寄せられた技術的信頼性に関する国民からの声等も含めて網羅的に課題を抽出

全体計画のうち、事業の安全な実施、経済性及び効率性の向上等の観点から、NUMOが 実施する技術開発の項目や技術開発工程等を整理*3

- 地質環境特性の長期変遷のモデル化技術の高度化 Improvement of modeling technology for long-term evolution of geological environment
- 地下水流動・物質移行モデルの妥当性確認手法の整備
 Development of methodologies for validation of groundwater flow and mass transport model
 - *1最新の科学的知見やこれまでの技術開発成果に基づき、サイトを特定せず、わが国における安全な地層処分の実現性について 総合的に検討した報告書
 - *2「地層処分技術 WG 」、「沿岸海底下等における地層処分の技術的課題に関する研究会」、「可逆性・回収可能性の確保に 向けた論点整理に係る検討会」等
 - *3地層処分事業の技術開発計画(2018年度~2022年度)改訂版(NUMO-TR-20-05)

トピックス 1:

地質環境特性の長期変遷のモデル化技術の高度化

Topics 1:

Improvement of modeling technology for long-term evolution of geological environment

- 包括的技術報告書では、日本の代表的な岩種(深成岩類、新第三紀堆積岩類、 先新第三紀堆積岩類)を対象に三次元の地質環境モデルを構築し、それに基づき 処分場の設計や安全評価を実施
- 将来の水理場及び化学場といった地質環境特性の変化の幅等を推定し、その結果を処分場の設計や安全評価に反映するために、これらと連携しつつ、地質環境特性の長期変遷のモデル化技術を整備することが課題

- より信頼性の高い、現実に即した処分場の設計や安全評価に資するために、長期に わたる地形の変化や気候・海水準変動等に伴う地表から地下深部までの水理場や 化学場といった地質環境特性の変化を考慮した、四次元地質環境モデル(三次元 空間に時間軸を考慮したモデル)の構築技術を整備する。
- To develop a technology for the 4D site descriptive modeling (the model has 3D space and time scale) that takes into account changes in characteristics of geological environment such as hydraulic and hydrochemical conditions from the surface to deep underground due to long-term topography and climate changes, in order to reflect for more reliable and realistic underground repository design and safety assessment.

これまでの主な検討内容 Previous studies

- 包括的技術報告書で示した三岩種(新第三紀堆積岩類、深成岩類及び先新第
 三紀堆積岩類)を対象として、四次元地質環境モデルを構築し、モデル構築に係る 作業手順や考え方、処分場の設計や安全評価に提供する情報の整理を実施
 - ✓ 全国規模の文献情報に基づき、仮想地域における現在から将来100万年間を対象とした 地形及び地質構造の長期変遷モデルを構築
 - ✓ 気候・海水準変動による解析条件の連続的な変化を考慮した非定常状態における地下 水流動・物質移行解析を実施
 - ✓ 処分場地下施設の設置可能領域を選定する際の留意点や考え方を整理するなど、解析 結果を処分場の設計及び安全評価に反映する方法について検討

☞深成岩類を対象としたモデル化・解析の事例を紹介

河川争奪などによる河川水系の時間的変遷に関する情報や知見を収集するとともに、河川水系の変遷を伴う広域的な地形変化や三岩種が混在する地形・地質構造条件を考慮した、より複雑な地質環境を対象としたモデル化・解析を実施中

現在の地形モデル及び三次元地質構造モデルの構築

Construction of topographic and 3D geological models at present

- 地形・地質構造の概念モデルの構築
 - ✓ 包括的技術報告書で整理された深成岩類の概念 モデルを適用
- 既存情報の収集・整理とモデル化
 - ✓ 花崗岩が分布する地域の既存情報に基づき、代表岩種の面積比及び個別岩体の形状、伸長方向等の地形・地質構造のモデル化に必要なパラメータを整理し、数値化
 - ✓ 数値化した情報を統合し、モデル化

Area ratio of representative rock types

地帯	花崗岩	花崗閃緑岩・トーナル岩・ 粗面岩	デイサイト・流紋岩・ 粗面岩
地帯A	46	14	40
地帯B	41	5	54
地帯C	54	42	4
		5. 11.7	地底网 (堪华区公企)

シームレス地質図(構造区分⑤)

現在モデルの構築に考慮すべき地形・地質構造要素の 抽出方法や、モデル化に必要となるデータ及びデータの 解釈や統合化に係る考え方・手順を整理

Conceptual model of groundwater flow

将来100万年間を対象とした地形モデル及び三次元地質構造モデルの構築

Construction of topographic and 3D geological models for 1 My in the future

● 既存情報の収集・整理とモデル化

✓ 隆起(沈降)、侵食(堆積)などの地形変化パラメータを整理し、数値化

✓ 数値化した情報を統合し、モデル化

Topographic and geological model in the future

将来モデルの構築に考慮すべき 時間断面の設定方法や、モデル 化に必要となるデータ及びデータ の解釈や統合化に係る考え方・ 手順を整理

非定常状態における地下水流動・物質移行解析の実施

Transient simulation of groundwater flow and mass transport

● 既存情報の収集・整理と解析

- ✓ 地下水流動・物質移行解析の解析条件(境界条件や その時間変化)を設定
- ✓ 長期にわたる地形変化や気候・海水準変動に伴う地下 水の流速分布や塩分濃度分布などの変化を連続的に 推定

地質環境特性の時間変遷を考慮した解析を実施するための領域設定、境界条件などの設定や、 解析パラメータの設定に係る考え方を整理

処分場地下施設設置可能領域の選定

Site selection of potential areas for underground repository facilities

候補母岩の広がりや断層などの地質構造の分布、地点ごとの地下水・物質移行特性に基づき 選定

岩種	深成	岩類		-	
処分場の候補母岩	花崗岩・オ	花崗岩・花崗閃緑岩			
処分場地下施設 設置可能領域 候補地点の選定条件	 現海岸線から海域20km、陸域20km程度の範囲 長さ10km以上の断層(活断層相当)が分布しない場所 複数の断層の連結可能性を考慮して、離間距離5km以内に同一 走向・傾斜方向の断層が一直線に分布しない場所 地形変化量が小さい場所 				
候補地点	【沿岸海域】 ● 地点A、B、C	【内 ● 地	陸部】 点D、E		
候補地点0	甫地点の地下水・物質移行特性の評価			地点A	
	沿岸海域		内陸部	L	
処分場地下施設 設置可能領域	 地点Bは、断層が交差するようになするため、地上設備やアクセス坑配置の観点から除外 地点Aと地点Cの地下水移行時間にきな差がないこと、地点Aの深部(層が伏在することから、地点Cを設す) 	分布 道の 二大 武断 翼	 地点Dと地点Eの地下 水の移行時間に大きな 差がないこと、地点D の地表地形の方が地上 施設の配置が容易なこ とから、地点Dを選定 	ようして しのに しのに	
	 施設の設置深度:深度毎に有意な 合理性や保守的な評価の観点から 	差がみ 最も浅	られないことから、経済 い標高-500mと設定		

Location of fault distribution and potential areas

モデルや解析結果に基づき、処分場地下施設設置可能領域を選定する際の留意点や考え方を整理

処分場地下施設設置可能領域の選定のための地下水・物質移行特性評価

Characterization of groundwater flow and mass transport for site selection of potential areas

処分場地下施設設置可能領域の候補地点を対象として粒子追跡線解析を実施

岩種		深成岩類
地下水・	粒子の出発点 の配置	● 水平方向:200m間隔 ● 深度方向:5深度(標高-500m~-1,000m;100m 間隔)
物質移行特性 の検討条件	地下水流動場	● 1万年毎の定常地下水流速場
017.03 ЖП	評価期間	 ●現在から約10万年後まで (海水準変動の1サイクル(海退期,海進期)を考慮)

地下水移行時間の比較・評価

- ▶ 沿岸海域(地点A、C)
 - ✓ 海退期:移行時間は短くなる(海底下の拡散場から陸域の移流場に変化)
 ✓ 海進期:移行時間は長くなる ____
- 内陸部(地点D、E)
 - ✓ 海退期、海進期ともに大きな変化なし

処分場地下施設設置可能領域を選定 する際に実施する地下水・物質移行解 析の仕様や結果の分析方法を整理

Distribution of groundwater travel time

処分場地下施設設置可能領域における地下水・物質移行特性評価

Characterization of groundwater flow and mass transport in the potential areas

処分場地下施設設置可能領域を対象としてより詳細な粒子追跡線解析を実施

安全評価に提供する情報を得るための地下水・物質移行解析の仕様や結果の分析方法の考え方を整理

安全評価に資するための地質環境特性に係る情報整理

Compilation of information on geological environmental characteristics for safety assessment

処分場地下施設設置可能領域のうち、地点Cの情報整理の一例

時間枠	(万年)	0~7.4	7.4~9.4	9.4~100	
解析モデルの 参照時間断面	(万年)	1, 3, 5, 7	9, 10	17(最大海退), 20(最大海進), 57(最大海退), 60(最大海進), 87(最大海退), 90(最大海進)	
相対海水	準変動	海退期	海進期	海進期 海退期 海進期	
	地質環境変動 イベント		隆起(常時海) ※処分場の上昇は解析モデル上考慮しない		
水理場 (移行時間) 沿岸海域 (地点C)		【沿岸付近】 ・大きな変化なし(数年オーダー)			
	小哇場 (移行時間)	【沿岸遠方】 ・短くなる傾向(数千→ 十数年)	【沿岸遠方】 ・長くなる傾向(十数 年→数千年)	【沿岸遠方】 ・短くなる傾向(数年〜数十年 に変化)	【沿岸遠方】 ・長くなる傾向(数百〜 数千年に変化)
	化半恒		【沿岸付)	近〕淡水環境が維持	
16字场 (塩分濃度)	【沿岸遠方】 ・塩水環境→淡水環境	【沿岸遠方】 ・淡水環境→塩水環境	【沿岸遠方】 ・塩水環境→淡水環境	【沿岸遠方】 ・淡水環境→塩水環境	
	地質環境の 不確実性	・長期的な相対海水準変動量の不確実性:水理場, 化学場(塩分濃度)に影響を及ぼす ・1サイクル目の海進/海退期における相対海水準の変動量の不確実性:化学場(塩分濃度)に影響を及ぼす			

時間枠ごとの処分場地下施設設置可能領域から生活圏インターフェイス(GBI)までの範囲における水理場 及び化学場(移行経路沿いの局所的な流速分布や塩分濃度分布)の状態及びその不確実性の整理を試行

NUMO

今後の取組み Future works

- 引き続き、四次元地質環境モデルに表現する地質環境情報の内容を検討するとともに、地質環境の時間変遷を考慮した地下水流動・物質移行解析結果を、処分場の設計及び安全評価に反映する方法の検討を実施する。
- 事例検討地域を対象とした過去から現在にかけての地質環境の変遷を考慮したモデル化及び解析作業を通じて、四次元地質環境モデルの構築技術の妥当性確認を実施する。
- 特定のサイトを対象とした、より現実的な処分場の設計や安全評価に反映するための四次元地質環境モデルの構築に必要なデータや調査項目、モデル構築の際に着目すべき点や留意事項を含む作業手順等を体系的に取りまとめる。
- The data and investigation items required for the construction of the 4D site descriptive model, important matters and work procedures for the model construction will be organized, and the modeling technology will be systematized.

トピックス 2:

地下水流動・物質移行モデルの妥当性確認手法の整備

Topics 2: Development of methodologies for validation of groundwater flow and mass transport model

- 概要調査段階以降における処分場の設計及び閉鎖後長期の安全評価では、地下水流動・物質移行モデルを用いた数値シミュレーションが実施されるが、地下水流動や物質移行の場となる地質環境は、岩盤中に分布する断層や割れ目等によって不均質であるため、数値シミュレーションに必要となる水理・物質移行パラメータや境界条件を完全に把握することは難しい。
- 不均質な岩盤における割れ目のモデル化に は割れ目ネットワークモデル(以下、DFNモ デル)といった確率論的な手法が適用される が、上記に示した地質環境の理解の不完全 性は、原位置で取得したデータとの単純な比 較によるモデルの妥当性の確認を困難にさせ る要因にもなっている。
- そのため、数値シミュレーションに用いるモデルの構築だけでなく、構築したモデルの妥当性確認の考え方や手順といった方法論の整備が必要である。

Image of DFN modeling

目的/これまでの主な検討内容 Aim / Previous studies

目的 Aim

- 不均質性を有する岩盤を対象とした地下水流動・物質移行評価結果の信頼性を示すための、調査、地下水流動・物質移行のモデル化・解析及びモデル化・解析結果の妥当性評価の具体的な考え方を構築する。
- To develop specific methodology for investigation, modeling and analysis of groundwater flow and mass transport, and validation of modeling and analysis results to demonstrate the reliability of groundwater flow and mass transport assessment results for rock mass with heterogeneous.

これまでの主な検討内容 Previous studies

地質環境がよく理解され、体系的な調査によって十分なデータが揃っていると期待された、エスポ地下岩盤研究所を事例として複数の手法を用いた岩盤の不均質性のモデル化・解析を行い、それぞれの手法の特徴や適用性・課題を抽出

☞エスポ地下岩盤研究所を対象としたモデル化・解析の事例を紹介
検討アプローチ Approach of this study

SKB Internationalとの協力協定に基づき入手したデータを用いた検討を実施

適用したモデル化手法 Modeling methods

● 水理地質構造の概念が異なる3種類のモデル化手法を適用

水理地質構造モデルの構築結果の一例

Results of hydrogeological modeling

● モデル化手法の違いによる透水性の比較

- ✓ DFNの多孔質媒体近似においては、割れ目が交差していない場合でも、多孔質媒体に近似することで 連続性が確保されるため、全体的な透水性は高くなる
- ✓ DFNからECPMへの変換の要素サイズが大きい場合は、より高透水性の割れ目が要素内に存在する 確率が高くなり、相対的に透水係数の小さい要素が少なくなる

概念モデルの違いが粒子追跡線解析結果に及ぼす影響の一例

Effects of different conceptual models on the results of particle tracking analysis

- 粒子追跡線解析の実施
- ✓ パイロットボーリング直交方向に動水勾配2%
 を設定
- ✓ KA3011A01孔内に配置した10,000個の 粒子を流量配分法で投入し、モデル下流端ま での移行時間を算出

概念モデル(モデル化手法)の違いが、解析 結果に及ぼす影響の特徴や程度を確認

概念モデル	結果
DFN	全ての粒子は高透水性の割れ目から出発するの で、初期到達、50%確率の移行時間が短い
DFN+ECPM	マトリクスから粒子が出発しているため、初期到 達時刻、50%確率の移行時間が長い
ЕСРМ	割れ目ネットワークに伴う分散効果を同等に表 す空間分解能でモデル化されていないため、移 行時間のばらつきが相対的に小さい

DFNモデルを用いた感度解析によるモデルパラメータの不確実性評価(1)

Uncertainty evaluation of model parameters by sensitivity analysis using DFN model

● 感度解析のケース設定

✓ データの不確実性やモデル化・解析入力パラメータ 値の不確実性の分析結果に基づき、着目すべき不 確実性因子を抽出し、それらを組み合わせて感度解 析のケースを設定

【抽出した不確実性因子】

割れ目の卓越方位の区分方法、②割れ目長さに
 関するべき乗数の設定方法、③最大割れ目長さ、④
 割れ目の透水量係数と長さとの関係(準相関もしくは無相関)

- ▶ 感度解析結果の一例(③最大割れ目長さに着目)
 - ✓ 最大割れ目長さの設定値が、湧水量の推定結果 に与える影響が大きい
 - ✓ 最大割れ目長さを大きく設定することで、規模が大きく透水性の高い割れ目の遭遇確率が高くなり、実測値の再現性が向上
 - ✓ ボーリング孔に遭遇する割れ目をコンディショニング することで、湧水量の再現性が向上

モデル化・解析作業に内在する不確実性を抽出し、それらの不確実性の関連性や解析結果に及ぼす影響を整理

Distribution of water inflow in the pilot borehole

NUMO

DFNモデルを用いた感度解析によるモデルパラメータの不確実性評価(2)

Uncertainty evaluation of model parameters by sensitivity analysis using DFN model

▶ 粒子追跡線解析の結果

- ✓ 最大割れ目長さの設定によって、地下水の移行時間分布が大きく異なる
- ✓ 最大割れ目長さを大きく設定することで、地下水の主要な移行経路となりうる規模が大きくかつ 透水性の高い割れ目が発生する確率が高くなり、地下水の移行時間分布のばらつきが増加
 ✓ 割れ目をコンディショニングすることで、地下水の移行経路の選択肢が限定されるため、移行時間 分布のばらつきが収斂する傾向

※30リアライゼーションの結果を表示

Distribution of groundwater travel time

地下水流動解析結果と粒子追跡線解析結果とを組み合わせた分析結果から、湧水量の再現性の 程度が地下水の移行時間のばらつきに影響を及ぼしている可能性が示唆

今後の取組み Future works

- 日本特有の特徴である割れ目の密度が高い岩盤を対象に以下について検討し、モデルの妥当性確認の方法論を構築するための技術的な知見を蓄積する。
 - ✓ 瑞浪超深地層研究所で取得された公開データを用いて、百m規模の空間スケールの水 理地質構造モデルの構築及び地下水流動・物質移行解析を実施
 - ✓ 上記のモデル構築及び解析に用いたデータの不確実性や作業仮説に内在する不確実性 を洗い出し、それらの不確実性が妥当性確認に用いる解析結果に及ぼす影響を整理
- エスポ地下岩盤研究施設の事例検討結果と瑞浪超深地層研究所を事例とした成果とを比較・統合し、割れ目密度の高い日本の岩盤に対する手法として、モデルの構築及び妥当性確認に有効なデータ・調査項目・数量等に関する技術的知見や提言をまとめる。
- Through a case study of the Mizunami underground research laboratory, the effects of uncertainties in modeling and simulation of fractured rock on the model validation will be analyzed. Furthermore, technical knowledge and recommendations regarding data, investigation items and quantities to modeling and model validation for rock mass with high facture density in Japan will be presented.

- NUMOにおける地質環境のモデル化技術の高度化として、以下2つの技術開発課題に対する取り組みの現状を紹介
 - ✓ 地質環境特性の長期変遷のモデル化技術の高度化
 - ✓ 地下水流動・物質移行モデルの妥当性確認手法の整備
- 今年度は、地層処分事業の技術開発計画(2018年度~2022年度)の最終年度 であり、これまでに得られた技術的な知見や成果などを実用的な技術として取りまとめ る。
- 今後は、概要調査以降の地質環境特性評価に適用する調査・評価技術の信頼性
 向上に向けた技術の整備を着実に進める。
- In the future, we will synthesize the results of studies related to the Advancement of geological environment modeling technology, and steadily develop technologies for improving the reliability of investigation and evaluation technologies applied to geological environment characteristics for the preliminary investigations in geological disposal project.

ご清聴ありがとうございました。

Thank you for your attention.

土木学会 エネルギー委員会主催

放射性廃棄物処分技術の最新動向に関する総合シンポジウム 令和4年5月17日(於:土木学会講堂)

幌延地下研における立坑掘削時の水圧応答と 亀裂連結性の変化等に関する研究開発

Hydro-mechanical response during excavation of shafts for the evaluation of fault hydraulic connectivity

> 日本原子力研究開発機構 幌延深地層研究センター 尾崎 裕介

Japan Atomic Energy Agency Horonobe Underground Research Center Yusuke Ozaki

本日の内容

About today's talk

Contents lists available at ScienceDirect

Geomechanics for Energy and the Environment

journal homepage: www.elsevier.com/locate/gete

Variation in fault hydraulic connectivity with depth in mudstone: An analysis of poroelastic hydraulic response to excavation in the Horonobe URL

Yusuke Ozaki^{a,*}, Eiichi Ishii^a, Kentaro Sugawara^b

^a Horonobe Underground Research Center, Japan Atomic Energy Agency, Hokushin 432-2, Horonobe-cho, Hokkaido, 098-3224, Japan ^b Geoscience Research Laboratory, Yamatohigashi 3-1-6, Yamato, Kanagawa, 242-0017, Japan

ARTICLE INFO

Article history:

Received 16 May 2021 Received in revised form 9 December 2021 Accepted 4 January 2022 Available online xxxx

Editors-in-Chief: Professor Lyesse Laloui and Professor Tomasz Hueckel

Keywords: Fault hydraulic connectivity Effective hydraulic conductivity Shaft excavation Hydraulic pressure monitoring Mandel-Cryer effect

ABSTRACT

Faulted mudstones have low effective hydraulic conductivity if the faults have limited hydraulic connectivity. Therefore, the hydraulic connectivity of faults is a crucial consideration in the geological disposal of high-level radioactive waste. There is a simple method based on single-borehole investigations to classify domains of faults in mudstone as having either high or low hydraulic connectivity. However, the nature of the hydraulic connectivity's transition with depth around the boundary between domains of faults with high and low hydraulic connectivity remains poorly understood. At the Horonobe Underground Research Laboratory (Japan), three shafts have been excavated in a Neogene siliceous mudstone, and hydraulic pressure has been monitored at boreholes during the laboratory's construction and operation. This study analyzed long-term hydraulic pressure data to estimate the variation of effective hydraulic conductivity and explore the nature of the variation of fault hydraulic connectivity with depth around the predicted boundary (at \sim 400 m depth) between domains of faults with high and low hydraulic connectivity (with less connectivity below the boundary). As the observed hydraulic pressure was greatly affected by the Mandel-Cryer effect, numerical simulations considered poroelastic effects. They showed that the effective hydraulic conductivity gradually decreased from \sim 400 to \sim 500 m depth, becoming comparable with that of intact rock below \sim 500 m. Theoretical analysis of the observed data also indicated the same variation with depth. These results suggest that the hydraulic connectivity of faults does not change abruptly, but instead varies gradually over several tens of meters around the domain boundary.

© 2022 Elsevier Ltd. All rights reserved.

GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT

Contents

• 背景・目的

- 研究対象と使用した
 データ
- 数值解析
 - 解析モデル
 - 感度解析(透水性)
 - 感度解析(力学特性)
- 結論

- Objective of this study
- Study site and data
- Numerical simulation
 - Simulation model
 - Sensitivity analysis of effective hydraulic conductivity
 - Sensitivity analysis of mechanical properties
- Conclusion and future study

背景・目的 Objective

- ・地層処分において低透水性の領域を検出する技術は 重要である
- 先行研究では、断層の力学的な挙動に基づき、地下 深部における堆積岩中の断層の連結性が乏しく透水 性が低いことが予測されている
- ・立坑掘削時の水圧応答の解析は、その応答の大きさから地下深部の低透水性領域の評価への利用が期待できることから、先行研究による低透水性の評価手法の実証に利用可能

Ħ

掘削と掘削時の湧水量 Excavation history and study period

掘削済みの深度および流量が概ね一定であり、モデル化が比較的容易なことから これらのうち1年間 (2008年10月 - 2009年10月)を解析の対象とする

立坑付近のボーリング孔 Studied data

解析対象:稚内層における水圧応答

未使用 — 使用

PB-V01

No.	Monitoring section (Below ground level, m)	Geology	Geological feature
1	30.76-47.00	Koetoi Fm.	
2	57.76-99.76	Koetoi Fm.	
3	100.76-140.76	Koetoi Fm.	
4	141.76-232.51	Koetoi Fm.	
5	234.01-299.51	Koetoi /Wakkanai Fm.	
6	301.01–355.51	Wkkanai Fm.	Fault
7	357.01-370.51	Wkkanai Fm.	
8	372.01-459.51	Wkkanai Fm.	
9	461.01–478.47	Wkkanai Fm.	Fault
10	479.97–520.00	Wkkanai Fm.	Fault

HDB-3

No.	Monitoring section (Below ground level, m)	Geology
1	90.19–100.04	Koetoi Fm.
2	185.36–195.21	Koetoi Fm.
3	196.11–258.53	Koetoi Fm.
4	326.39–336.21	Koetoi Fm.
5	397.54–426.84	Koetoi Fm.
6	435.23-487.28	Wkkanai Fm.
7	488.18-498.00	Wkkanai Fm.

HDB-6

No.	Monitoring section (Below ground level, m)	Geology	Geological feature
1	60.57-70.41	Koetoi Fm.	
2	71.31-24.74	Koetoi Fm.	
3	225.64-287.76	Koetoi Fm.	
4	291.00-301.00	Wkkanai Fm.	Fault
5	303.80-361.94	Wkkanai Fm.	
6	364.00-374.00	Wkkanai Fm.	Fault
7	389.00–394.00	Wkkanai Fm.	Fault
8	443.50–450.50	Wkkanai Fm.	Fault
9	509.00-514.00	Wkkanai Fm.	No Fault
10	562.50-567.50	Wkkanai Fm.	Fault
11	587.50-592.50	Wkkanai Fm.	No Fault

HDB-6における水圧応答 Hydraulic response in HDB-6

- 509mより浅い位置にあるボーリング孔では水圧が低下
- 509mより深い位置にあるボーリング孔では水圧が上昇

PB-V01における水圧応答 Hydraulic response in PB-V01

- 461.01mより浅い位置にあるボーリング孔では水圧が低下
- 461.01mより深い位置にあるボーリング孔では水圧が一時的に上昇

9

数值解析 Numerical simulation

• ビオ理論に基づく水理力学連成解析

幌延のような軟岩においては水理力学連成動が顕著な可能性 基礎方程式

 $-\nabla \cdot \sigma = f + \rho g$ つり合い式

$$\frac{\partial \zeta}{\partial t} - \frac{k}{\rho g} \nabla^2 p = s$$
 地下水の質量保存則

FLAC3D 5.01を用いて解析を実施

概念モデル

Conceptual Model

Simulation results

- 力学特性および水理力学連成挙動に関する物性値
 は、室内試験により取得された値を参考に設定
- 声問層および稚内層浅部の透水性は、パッカー試験により取得された値を参考に設定
- 稚内層深部の透水性は健岩部の値を参考に設定

空中しノルのハノハニト	基本モ	デルの	パラン	〈一夕
-------------	-----	-----	-----	-----

	G [GPa]	K [GPa]	α	В	ф	k [m/s]	S _s [1/m]
Koetoi Formation	0.24	0.55	1.0	0.87	60	5.0×10 ⁻⁹	1.4×10 ⁻⁵
Shallow domain	1.95	1.62	0.93	0.79	40	2.0×10 ⁻⁸	3.5×10⁻ ⁶
Deep domain 1	1.95	1.62	0.93	0.79	40	1.0×10 ⁻¹¹	3.5×10⁻ ⁶
Deep domain 1.5	1.95	1.62	0.93	0.79	40	1.0×10 ⁻¹¹	3.5×10⁻ ⁶
Deep domain 2	1.95	1.62	0.93	0.79	40	1.0×10 ⁻¹¹	3.5×10 ⁻⁶

解析結果(水頭分布)Simulation results 1年後の解析結果 (水頭分布) Simulation results

解析結果(体積ひずみ) Simulation results 1年後の解析結果 (体積ひずみ) (Volumetric strain)

稚内深部における水頭上昇 Mechanism of pressure raise

排水

排水条件下における稚内層深部での水圧上昇はMandel Cryer効果で説明できる

解析結果と観測値の比較 Comparison of measured data and simulated results

295 m (Sec. 4)

365 m (Sec. 6)

395 m (Sec. 7 445 m (Sec. 8)

515 m (Sec. 9)

565 m (Sec. 10)

585 m (Sec. 11)

100 m

Wakkanai Formation (Siliceous mudstone)

200

250

Depth 700 Tepth 700

450

500

600

700

322.5 m (Sec. 6)

Shallow domain

Deep domain 2

465 m (Sec. 9)

485 m (Sec. 10)

- 解析結果では稚内層浅部分では水頭が減少
- 椎内層深部で水頭の上昇を再現 •
- 椎内層浅部において、水理力学連成挙動は 水頭の減少を抑制

解析結果と観測値の比較

Comparison of measured data and simulated results

- 水理力学連成挙動を考慮しない場合、水頭に変化が見られない
- 水理力学連成挙動を考慮した場合、水頭が上昇

深度450m付近では基本モデルで設定した透水性よりも高い可能性

解析結果と観測値の比較

Comparison of measured data and simulated results

稚内層深部における水頭変化は再現

HDB-6における比較に関する考察 Question come from the comparisons

解析結果はDIの値が2付近である区間8を 除いて概ね観測値を再現

• DIが2付近において透水性がどのように 変化するのか評価

- PB-V01における比較による検討
- 感度解析による検討

HDB-6における水圧応答の感度解析 Parametric study around the boundary between shallow and deep domain

• 透水性(断層の連結性)が地下深くなるにつれて徐々に低下するという 仮定の下、区間8が位置する深度の透水性を評価

区間8が位置する深度における透水性は、稚内層浅部と深部の間の値をとり
うる。

PV-B01における比較 Comparison of results in PV-B01

Deep domain 1	$1.0 imes 10^{-9}$
Deep domain 1.5	1.0×10 ⁻⁹
Deep domain 2	1.0×10 ⁻¹¹

HDB-6における比較による推定

	Effective hydraulic conductivity [m/s]	
Shallow domain	≈2.0×10 ⁻⁸	
Deep domain 1	1.0×10 ⁻¹⁰ -1.0×10 ⁻⁹	$\overline{\mathbb{N}}$
Deep domain 2	1.0×10 ⁻¹¹	~

稚内層浅部と深部の間の領域をさらに分割

21

PV-B01による比較からも、稚内層深部において透水性(断層の連結性)が 徐々に低下する様子が示唆される

PV-B01における比較 Comparison of results in PV-B01

PV-B01による比較からも、稚内層深部において透水性(断層の連結性)が 徐々に低下する様子が示唆され、以下のように推定される

	Effective H.C.	Fault hydraulic connectivity
Shallow domain	≈2.0×10 ⁻⁸	High
Deep domain 1	1.0×10 ⁻¹⁰ -1.0×10 ⁻⁹	Intermediate
Deep domain 1.5	≈1.0×10 ⁻¹⁰	Intermediate
Deep domain 2	1.0×10 ⁻¹¹ -1.0×10 ⁻¹⁰	Low

HDB-6における推定結果の検証

Confirmation of data in HDB-6

Deep domain 1	1.0 × 10 ⁻⁹
Deep domain 1.5	1.0×10 ⁻¹⁰
Deep domain 2	1.0×10 ⁻¹¹

Deep domain 1	1.0×10 ⁻¹⁰
Deep domain 1.5	1.0×10 ⁻¹⁰
Deep domain 2	1.0×10 ⁻¹⁰

HDB-6およびPB-V01の水圧応答から、稚内層のDIの値が2付近の領域において、 透水性(断層の亀裂の連結性)が徐々に低下する様子が示唆された

力学特性の設定および感度解析

Effect of mechanical properties on hydraulic response

- 水理力学連成挙動を考慮する場合、透水性に加えて力学的な物性値も設定する必要
- 健岩部相当の物性値を入力し立坑掘削時の水圧応答を再現
- 健岩部相当の物性値から計算される比貯留係数は、
 原位置で観測された値と調和的

今回の再現解析を実施したような施設スケールの解析においては、
 亀裂の連結性によらず健岩部相当の物性値を用いて解析できる可能性

力学特性が水圧応答に与える影響を検証

感度解析の条件

- 1. 稚内層は声問層よりも硬い(地下深部は地下浅部よりも硬い)
- 2. ポアソン比は正

体積弾性率および剛性率を制約

感度解析(体積弾性率) Sensitivity analysis of bulk modulus

25

Sensitivity analysis of shear modulus

稚内層浅部と深部の剛性率の差が、稚内層深部における水圧上昇の程度に寄与

Conclusion

- 水理力学連成解析により立坑掘削時の水圧応答の
 再現解析を実施
- ・ 稚内層深部において排水条件下で観測された水圧 上昇は水理力学連成挙動 (Mandel-Cryer effect)により再現
- ・感度解析により、透水性(断層の連結性)は地下
 深部において徐々に低下する
パラメータ設定

Parameter Setting

体積弾性率の感度解析

	Koetoi Fm.			Wakkanai Fm.		
	G [GPa]	K [GPa]	γ	G [GPa]	K [GPa]	γ
Reference model	0.24	0.55	0.31	1.95	1.62	0.07
Low K in Wk	0.24	0.55	0.31	1.95	1.35	0.01
High K in Kt	0.24	1.62	0.07	1.95	1.62	0.01

剛性率の感度解析

	Koetoi Fm.			Wakkanai Fm.		
	G [GPa]	K [GPa]	γ	G [GPa]	K [GPa]	γ
Reference model	0.24	0.55	0.31	1.95	1.62	0.07
Low K in Wk	0.24	0.55	0.31	0.24	1.62	0.43
High K in Kt	0.80	0.55	0.01	1.95	1.62	0.07

亀裂性媒体の地下水流動・核種移行解析における 不確実性 Uncertainty in flow and mass transport model of fractured rock

Fracture Flow Solutions

内田 雅大 Masahiro UCHIDA

2022年5月17日 土木学会シンポジウム

■ 亀裂ネットワークモデル(DFN) Discrete Fracture Network Model (DFN)

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

■連結性 Connectivity of fractures

■チャンネリング

Channeling

①マトリクス拡散寄与面積 Flow wetted surface

②マトリクス拡散深さ Matrix diffusion depth

■ 亀裂ネットワークモデル(DFN) Discrete Fracture Network Model (DFN)

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

■連結性 Connectivity of fractures

■ チャンネリング Channeling

> ①マトリクス拡散寄与面積 Flow wetted surface

②マトリクス拡散深さ Matrix diffusion depth

亀裂性岩盤中の水理・物質移行解析に 使用されるモデル

Models used for flow and mass transport simulation of fractured rock

DFNの歴史 History of DFN

Modelling procedure of DFN

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

■連結性 Connectivity of fractures

■チャンネリング Channeling

> ①マトリクス拡散寄与面積 Flow wetted surface

②マトリクス拡散深さ Matrix diffusion depth

JAEA瑞浪の地下研での透水性亀裂

Conductive fractures in Mizunami Underground Research Laboratory

FFS

割れ目の繰り返し開ロ・充填のイメージ

Schematic drawing of repeated opening and sealing of fractures

充填と開口の複数回の繰り返し Multiple events of opening and sealing of fractures

0.25 mm

► 方解石

+

Kfs

濁沸石上の方解石 Calcite formed on the laumontite

透水性亀裂と非透水性亀裂のサイズの違い

Difference in fracture size between conductive fractures and non-conductive fractures

・べき乗則は、通常全亀裂に対して定義されており、透水性亀裂を表現していない可能性がある。瑞浪では両者に違いがあることが示されている。
 Power law parameters are different between nonconductive fractures and conductive fractures

✓大きな亀裂は連結する可能性が高く、透水性となる可能性が高い Large fractures are more likely to be connected and likely to form flow path

✓小さな亀裂は連結する可能性が低く、非透水性亀裂となる可能性が高い Small fractures are more likely to be isolated and likely to be non-conductive fractures

Geo-DFN vs Hydro-DFN

- 目的に応じたDFNの使い分けが必要
 Need to model different fractures for DFN depending on the model purpose (such as geology, rock mechanics, flow, etc.)
- 地質的亀裂と透水性亀裂の不一致

Disagreement of geologic fractures and conductive fractures

✓沈殿・充填によるシールと開口(reactivation)の繰り返し

Repeated events of sealing and opening (reactivation)

- ✓現在の地下水から沈殿した自形鉱物に着目 Use of euhedral minerals precipitated from modern groundwater as a marker of conductive fractures
- 透水性亀裂の亀裂パラメータを設定する必要

Need of determining fracture parameters specific to conductive fractures

■ 亀 裂 ネットワークモデル(DFN) Discrete Fracture Network Model (DFN)

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

 チャンネリング Channeling
 ①マトリクス拡散寄与面積 Flow wetted surface
 ②マトリクス拡散深さ Matrix diffusion depth

2. 連結性

Connectivity of fractures

 ・ 従来のDFNモデルは、連結性を過大評価する(overconnectivity)傾向があり、連続 体モデルに近い挙動を示す

Traditional DFN models tends to overestimate the connectivity (overconnectivity) and behaves like a continuum model

- 実際の岩盤は、「水みち」が偏在する傾向にあり、これを十分に表現できていない
 Conductive pathways in the actual rock are localized and DFN models fail to reproduce
- この問題は、John Blackが指摘しており、Sparse channel network modelが提唱されている

This issue is pointed out by John Black and he proposes "Sparse channel network model"

• 水理コンパートメント

Flow compartment

釜石鉱山トレーサー試験エリアでの流量検層結果 Flow log results in the tracer experiment area of the Kamaishi mine

KH-22孔およびKH-23孔では2箇所でしか湧水 が認められず、湧水箇所が偏在している。 Only 2 outflow points are found in KH-22 and KH-23 indicating outflow points are localized

釜石鉱山トレーサー試験エリアでの亀裂頻度と流量検層結果 の比較

Comparison of fracture frequency with flow log

 透水に寄与するのはごく一部の亀裂である A limited number of fractures contribute to flow

F

F

FFS

コンパートメント構造の調査方法

A method for characterizing flow compartments used in the Kamaishi mine

 掘削深度と水圧変化を同時に記録することにより掘削に伴う圧力干渉を把握 Detect different pressure domain by monitoring drilling progress and pressure response

17

FFS

コンパートメント構造を示唆するデータ Pressure responses indicating flow compartments

KH-20孔 32.8m, 37.5m掘削時の水圧応答 Pressure responses occurred during drilling at the depth of 32.8 and 37.5m of KH-20

KH-19孔 区間5は応答するがそれ以深の区間は 応答しない

→コンパートメント構造を示唆

Only section 5 of KH-19 responded, while other sections not responded

 \rightarrow Indicate the presence of flow compartment

エスポHRL-TRUE Block Scale試験エリアにおけるコンパートメント構造を示唆する ボーリング掘削時の応答

Pressure responses indicating flow compartments at the TRUE Block Scale Experiment area in the Äspö Hard Rock Laboratory in Sweden

KI0025F02孔掘削時に観測孔(KI0023)の一部区間のみ応答し、その他の区間では応答がない
 例 A到達時に、S7とS8が強く応答したが、S2とS3は全く応答せず
 B到達時に、S3,S4,S5,S6が応答開始
 D到達時に、S2が応答開始

Pressure responses are recorded at the specific sections of the monitoring hole (KI0023) during drilling of KI0025F02

 i.e. When drilling reached A, Sections S7 and S8 strongly responded. But, S2 and S3 did not respond. When drilling reached B, Sections S3,S4,S5 and S6 started to respond When drilling reached D, Sections S2 started to respond

KIUU23B.P7	43.45-69.95
KI0023B:P8	41.45-42.45
KI0023B:P9	4.6-40.45

(Andersson et al, 2002)

地質的連結性と水理的連結性 Geologic connectivity and hydraulic connectivity

20

Concepts of flow path modelling Options for assigning transmissivity

非相関 No correlation

対数正規分布からランダムに サンプリング T is randomly sampled from log normal distribution

亀裂半径との相関 Positive correlation between size and T

大きな亀裂ほど高い透水性 Large fracture has higher T

移行経路相関 Pathway correlation

選択的移行経路を形成するよう 高い透水性を設定 T's are assigned so that pathway becomes preferential path 高透水性の亀裂 **High T fracture** 中透水性の亀裂 Middle T fracture 低透水性の亀裂 Low T fracture

Hydraulic Connectivity

- ・ 亀裂に透水量係数を割り当てる際に、従来はランダムあるいは亀裂サイズとの相関性を考慮していたが、「移行経路相関」のように特定の移行経路に高い透水性を割り当てる必要 Traditional DFN assigns T randomly or correlating to fracture size. There may be a need to assign T to reproduce preferential flow path.
 - ✓その際、非現実的な移行経路とならないよう、移行経路全体の水理的抵抗と移行経路頻度 が実測を再現することが重要

It is important to reproduce both measured flow resistance along the flow path and the measured frequency of the flow paths to avoid generating unrealistic pathways

- コンパートメントは、上記とは逆に連結性を遮るような低透水性を割り当てることで再現可能
 Flow compartment can be reproduced by assigning low T in the pathway
 - ✓コンパートメントの原因は、充填と開口の複数回の繰り返しにより生じた可能性がある Flow compartment may be formed by multiple events of sealing and reopening of fractures
 - ✓ただし、コンパートメントは完全に閉じた領域を形成していない可能性があり、不確実性として 閉じた場合とそうでない場合の両方のケースを考慮する必要 Flow compartment may not be perfectly closed. Uncertainty such as closed case and non-closed case need to be considered.

■ 亀 裂 ネットワークモデル(DFN) Discrete Fracture Network Model (DFN)

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

■連結性 Connectivity of fractures

■チャンネリング

Channeling

①マトリクス拡散寄与面積 Flow wetted surface

②マトリクス拡散深さ Matrix diffusion depth

3. チャンネリング Channeling

■ 2つの課題・不確実性 Two issues/uncertainties

マトリクス拡散寄与面積
 Flow wetted surface

②マトリクス拡散深さMatrix diffusion depth

(Mito et al., 1990)

Flow Wetted Surfaceと F-パラメータ、u-パラメータ

Flow Wetted Surface, F-parameter, u-parameter

F-parameter $F_i = 2 W_i L_i / Q_i$

距離Li下流の地点での濃度C_f(分散考慮せず、無限大マトリクス拡散深さの場合) Concentration C_f at the point with distance L_i from source (w/o dispersion, infinite matrix diffusion depth) C_f (L_i, t) = C₀ erfc (u_it^{-1/2})

u-parameter: $\mathbf{u}_{i} = \mathbf{F}_{i}\sqrt{D_{m,i}(\varepsilon_{m,i} + K_{d,i}\rho)}$ D_{m} :拡散係数、Kd:分配係数 → 収着性トレーサー : $\mathbf{u}_{sorb} \approx \mathbf{F}_{i}\sqrt{D_{m,i}K_{d,i}\rho}$ 非収着性トレーサー: $\mathbf{u}_{nonsorb} \approx \mathbf{F}_{i}\sqrt{D_{m,i}\varepsilon_{m,i}}$

uーパラメータと破過曲線

u-parameter and Breakthrough curves

u-パラメータの増加→ピーク時間の遅れ、ピーク濃度の低下 Larger u-parameter → delay of peak time → decrease in peak concentration

チャンネリング ーNagraのKrystalline-1における亀裂内部構造のモデル化と評価結果ー ^{Channeling}

FFS

- Different channeling assumptions and resulting nuclide flux in Kristalline-I safety assessment by Nagra -

①マトリクス拡散寄与面積 Flow wetted surface

■ 2つの課題・不確実性: Two issues/uncertainties:

FFS

i) 亀裂充填物を介したマトリクス拡散寄与面積の増加 Increase in FWS by lateral diffusion through fracture fillings

 ✓ 変質ハローは、チャンネルの両側だけ でなく、亀裂のかなりの範囲あるいは 全面にわたって生じることが多い

Alteration halo develops along the significant portion of fracture or sometimes along the entire length of fractures

ii) 複雑な内部構造を有する亀裂のマトリクス拡散寄与面積 FWS of fracture with complicated internal structure

移行経路の概念モデル Conceptual model of single fracture

→より広い範囲への拡散が起き、遅延効果が増大する More fracture surface become available for matrix diffusion, thereby increase retardation

複雑な内部構造を有する亀裂のマトリクス拡散寄与面積

FWS of fracture with complicated internal structure

- 「単一亀裂」であっても内部に複数の破断面が存在 "Single" fractures sometimes have multiple micro fractures
- 安全評価の時間スケールで有効なマトリクス拡散寄与面積の設定が必要 Need to determine effective FWS in the time scale of safety assessment

Äspö地下研究施設におけるTRUE-1トレーサー試験、Feature Aの断面 Cross-sections of Feature A of TRUE-1 Tracer Test Area in Äspö Hard Rock Laboratory

Alteration halo developed along the fracture within the granodiorite in the Kamaishi mine

- 安全評価上の重要パラメータ Important parameter for safety assessment
- それにも拘わらず、2つの意見が対立 Nevertheless, there exist two conflicting opinions:

① 拡散深さに制限はない: スウェーデンSKB Unlimited diffusion depth: SKB (Sweden)

- ②拡散深さに制限がある: Wogelius他(2020) Limited diffusion depth: Wogelius et al. (2020)
 - ⇒2次的方解石が微小空隙を充填することにより拡散深さは亀裂面から 数cm以内に制限

Diffusion depth is limited within a few cm due to sealing of micropores by precipitation of secondary calcite

 どちらが正しいのか、あるいは両方を統合的に説明できる別の考え方があるの か検討が必要

Necessary to settle the argument or develop a new idea to reconcile both opinions

チャンネリングに関する課題・不確実性

Issues and uncertainty of channeling

- ■マトリクス拡散寄与面積 Flow wetted surface
- 割れ目充填物を介したマトリクス拡散の効果 Enhanced fracture surface area available for matrix diffusion via fracture fillings
- 複雑な亀裂内部構造を有する場合のパラメータ設定
 Determine parameter for fractures which have a complicated internal structure
- ■マトリクス拡散深さ Matrix diffusion depth
- マトリクス拡散深さは制限が存在する vs 存在しない
 Limited matrix diffusion depth vs unlimited matrix diffusion depth

内容 Contents

■ 亀裂ネットワークモデル(DFN) Discrete Fracture Network Model (DFN)

Geo-DFN vs Hydro-DFN Geo-DFN vs Hydro-DFN

■連結性 Connectivity of fractures

■チャンネリング Channeling

> ①マトリクス拡散寄与面積 Flow wetted surface

②マトリクス拡散深さ Matrix diffusion depth

・ 亀裂性媒体のモデル化に際して、非透水性亀裂と透水性亀裂の識別と透水性亀裂の亀裂パラメータの設定が重要

Distinguishing conductive fractures from nonconductive fractures is important. Also, it is important to determine fracture parameters specific to conductive fractures.

- 透水性亀裂は空間的に偏在する傾向があり、「水みち」を形成するように亀裂への透水性の設定 が必要。その際、「水みち」の頻度と移行経路全体の透水性について実測値による拘束が必要 Conductive fractures are unevenly distributed. Transmissivity should be assigned to form preferential pathways. In this case, constraining the frequency of pathways and resistance along the pathways by measurement is important.
- コンパートメントも不確実性の一つ。完全に閉じていない可能性があり、その不確実性を考慮することが重要

Flow compartment is one of the uncertainty. There is a possibility that compartments are not fully closed

マトリクス拡散寄与面積は、充填物を介した拡散寄与面積の増加、複雑な内部構造を有する場合の評価、が課題

As to flow wetted surface, possible increase due to lateral diffusion through fracture fillings and evaluation of FWS of "single" fracture with multiple micro fractures are the issues.

マトリクス拡散深さは有限とする考え方と無限とする考え方が対立しており、統一した見解が必要

There is an argument over limited matrix diffusion depth vs unlimited matrix diffusion depth. Necessary to settle the argument or develop a new idea to reconcile both opinions

ご清聴ありがとうございました 謝謝您們的聆聽