放射性廃棄物地層処分における長期の地下水動態評価に 係る地下水年代測定技術の最近の進展 (Recent Progress in Groundwater Dating Techniques for Assessing Long-Term Groundwater Dynamics in Geological Disposal of Radioactive Waste)

電力中央研究所

(Central Research Institute of Electric Power Industry)

中田 弘太郎*

Kotaro Nakata

長谷川 琢磨

Takuma Hasegawa

R電力中央研究所

本日発表の内容:Contents

◆研究の背景: Background of our research

- ◆地下水年代とその測定原理: Groundwater dating and the principals
- ◆適用事例: Recent case study
- ✓⁸¹Krによる年代測定: Groundwater dating with ⁸¹Kr
- ◆まとめ:Summary

◆研究の背景: Background of our research

II電力中央研究所

背景: Background of the research

◎ 地層処分の概念: Concept of Geological Disposal

◎ 人間が影響を受ける可能性: Possible Scenarios

- 地層の隆起で処分場が地表付近に
- 多重バリアシステム:人工+天然バリア
- 核種が地下水に溶出、地下水の流れとともに人間の生活圏へ: Groundwater Scenario

R 電力中央研究所

地下水年代とは? What is groundwater age?

地下水の年齢:地下水が地下に入ってからの時間→「地下水年代」 Groundwater age: the residence time of GW since recharge

地下水年代の廃棄物処分への利用 <u>Use of groundwater age for HLW disposal</u>

◎ PAの醸成: Forming of public acceptance

◎ モデル評価への適用: Application for model calibration

直感的に地下水が動きにくいことを理解 We can "feel" groundwater is old

IR 電力中央研究所

長期・広域の地下水流動を理解

The regional flow of groundwater during the long period can be assumed from age of groundwater

◆地下水年代とその測定原理: Groundwater dating and the principals

R電力中央研究所

地下水年代をどのように評価するか? How to evaluate the groundwater age?

地下水の年代の推定方法 ◆地下で増えるものを利用: ヘリウムガスなど Use of something increase in subsurface ◆地下で減るものを利用: 天然の放射性核種 Use of something decreases in subsurface ◆過去の気候変動なども利用できることも Other methods: Use of paleo-climate etc.

雷力中央研究所

地下中で増えていくものを利用

Use of something increase in subsurface

代表例: ヘリウムガス (Representative example Helium)

ヘリウムガスとは?

・特性(characteristics):他の物質と反応しない(chemically inert)

・発生(origin in subsurface):岩石に含まれるウラン/トリウムの反 応から発生(generated from reactions of U and Th)

古い地下水ほどHe濃度が高くなる、年代が古いほど分析が容易

The concentration of He increase with increase of groundwater age

地下水のヘリウム濃度、岩石からのヘリウムの発生速度がわか れば、地下水年代を推定できる

Groundwater age can be estimated from concentration of He in GW and U and Th concentrations in rocks

II 電力中央研究所 地下水年代の評価方法:減っていくもの Use of something increase in subsurface

例: 天然の放射性核種(14C・⁸¹Krなど)

大気中の放射性核種 →宇宙線による生成と崩 壊がバランス

¹⁴C stable in air

地下中の放射性核種→生 成がなく、「半減期」に従っ てなくなる

¹⁴C decreases according to half-life in subsurface

濃度と半減期から年代を 推定できる (age can be estimated from concentration and half-life)

R^{電力中央研究所} 地下水年代の評価方法:そのほか Other methods

冷蔵庫のコーラ

vs 室温のコーラ

例: 昔の気候変動を利用 Use of Paleo climate

- 気温が低い:水にガスが溶けやすい。
- ・気温が高い:水にガスが溶けにくい

ガスの濃度が高い箇所は、気温が低いときに地下に入った水である可能性 High concentration of gases may be caused by low temperature

© CRIEPⅠ 1ガラフ:中田ほか、電力中央研究所報告N10036から引用

適用事例: Recent case studies ✓⁸¹Krによる年代測定: Groundwater dating with ⁸¹Kr

IR 電力中央研究所

⁸¹Krの特徴 Characteristics of ⁸¹Kr

◎⁸¹Krの特徴(その1)

 放射性希ガス:化学的反応性低い Radioactive noble gas: it is not involved in geochemical reactions ・半減期:22.9万年→10~100万年程度の地下水年代評価可能 Half-life 2.29x10⁵ years: it can be used for dating for 1x10⁵ to 1x10⁶ years ・近年分析手法の開発により、現実的なサンプル量で分析が可能となった Development of measurement method allows us to measure ⁸¹Kr with relatively small amount of sample

Atom Tram Trace Analysis (ATTA)

アメリカ・中国・オーストラリア の研究機関で分析可能 It can be conducted in US. China and Australia 13

⁸¹Krの有用性 Usefulness of ⁸¹Kr

◎⁸¹Krの特徴(その2)

・地表では発生源があるが、地下では発生源が(ほとんど)ない
Production of ⁸¹Kr is almost negligible in subsurface

地表の水・若い地下水浸入の指標となる ⁸¹Kr can act as an indicator of intrusion of surface/young water

⁸¹Krの利用(日本での課題)Use of ⁸¹Kr (Issues in Japan)

◆ 日本では地下水におけるメタン濃度が高いケースがある
Concentration of methane is sometimes high in Japan

◆ メタンによりKrの濃度が薄まっている→大量のガスが必要 Concentration of Kr is diluted by methane

◆ メタンにより分析機関への送付が難しくなる

High concentration of methane makes the transportation difficult

地下水から抽出したガスからメタンを除去し、Kr濃度を高める 技術を開発させる必要がある Development of removal method of methane from gas samples is required

メタンの減量方法の検討 Removal method of methane

3つの手法の検討

Development of removal method of methane is required

手法	利点(merit)	欠点(demerit)
<mark>メタンの酸化</mark> Oxidation of methane	詳細はのちほど (Mentioned later)	二酸化炭素・水を除去する必 要 H ₂ O and CO ₂ have to be removed
チタンへの吸着 Sorption of methane on titanium	多くの反応性のガスを 除去できる Many kinds of gases can be removed	真空度が上がる分、コンタミし やすい。チタン表面状態の制 御が難しい (High vacuum results in contamination. Controlling the surface conditions of Ti is difficult)
冷却トラップ Sorption on cold trap	高温での加熱が不要 High temperature is not required	回収率低い Low recovery

メタンの減量方法の検討 Removal method of methane

メタンの酸化→トラップ法

Development of removal method of methane is required

□ 酸化銅燃焼炉(combustion furnace):メタンを二酸化炭素と水に酸化
□ モレキュラーシーブ(molecular sieve):水をトラップ

□ 二酸化炭素吸収剤入りガスバッグ(gas bag with CO₂ absorber): 二酸 化炭素をトラップ

輸送が容易

Be transported easily

メタンの減量方法の検討 Removal method of methane

【北海道幌延地域のガスへの適用例

(Application to gases obtained in Horonobe, Hokkaido]

サンプル		<mark>容量</mark>	ガス濃度(%) Concentration				Kr濃度		
(Sample)			H ₂	0 ₂	N ₂	CH ₄	CO ₂	(ppm)	
13-350LGE-M01	Before treatment	40L	0.0	0.6	2.6	<mark>89.4</mark>	5.9	0.04	
	After treatment	<mark>0.46L</mark>	0.0	51.0	<mark>48.6</mark>	0.1	0.4	3.06	92%

- ・主要成分(Main component):メタン(Methane)→窒素(N2)
- ・サンプルの体積(Volume of sample):40L→0.46L
- ・Kr回収率が高い(high Kr recovery)→CO₂がキャリアの役割(CO₂ acts as carrier gas)
 - ▶ 貴重なサンプルの損失がない

(We do not lose important samples)

R電力中央研究所

幌延地域への適用 Application to groundwater in Horonobe

■ 電力中央研究所

幌延地域への適用 Application to groundwater in Horonobe

⁸¹Krまとめ Summary of ⁸¹Kr

◆ ⁸¹Krの特性:その性質から、天水浸入の指標として有効 Characteristics of 81Kr:It can provide information about intrusion of surface/young groundwater

◆ 現時点での課題:メタンにより分析機関への安全・確実な輸送が阻害される可能性がある→メタンを低減し、Kr濃度を高める手法を開発
Methane can be a big issue for safety transportation and
measurement of ⁸¹Kr→ The method that can reduce the amount of
methane has been developed

 ◆ 幌延地域の地下水への適用:250mに比較的若い地下水が流れ込んだ 可能性を示唆(Cl濃度等と合致:更なる検討必要)
Application to Horonobe groundwater : The results indicated young groundwater may flow into 250m (further investigation is required)

日本の地下水で⁸¹Krを適用し、年代評価ができることを確認した It was confirmed that ⁸¹Kr can be used as a tracer of groundwater age

まとめ Summary

◆ 地下水年代:長期・広域の地下水流動に関する情報・解析結果の妥当性検証に有効

Groundwater age can provide useful information about regional flow of groundwater during long period: it can be applied to calibration of flow model

◆ 地下水年代:地下中で増えていくもの、減っていくものに着目し、地下水の 年を評価する手法

Groundwater age is estimated from something increase/decrease in subsurface

 ◆ 最新の事例(⁸¹Krの利用):81Krは天水由来の地下水の浸入評価に有効。メ タンを除去し⁸¹Krを分析する手法を開発→幌延地域での有効性を示した
Recent case study (use of 81Kr): 81Kr can indicate the inclusion of young groundwater into old one. The method for removing methane from gas samples has been developed→ ⁸¹Kr has been applied to groundwater in Hornobe area

II電力中央研究所

謝辞

◆ここで発表した成果は経済産業省からの受託事業「高レベル放射性廃棄物等の地層処分に関する技術開発事業(JPJ007597)(岩盤中地下水流動評価技術高度化開発(令和3年度))」において得られたものである。 ◆サンプル採取等において、JAEAの宮川和也氏に多大な貢献をいただいた。