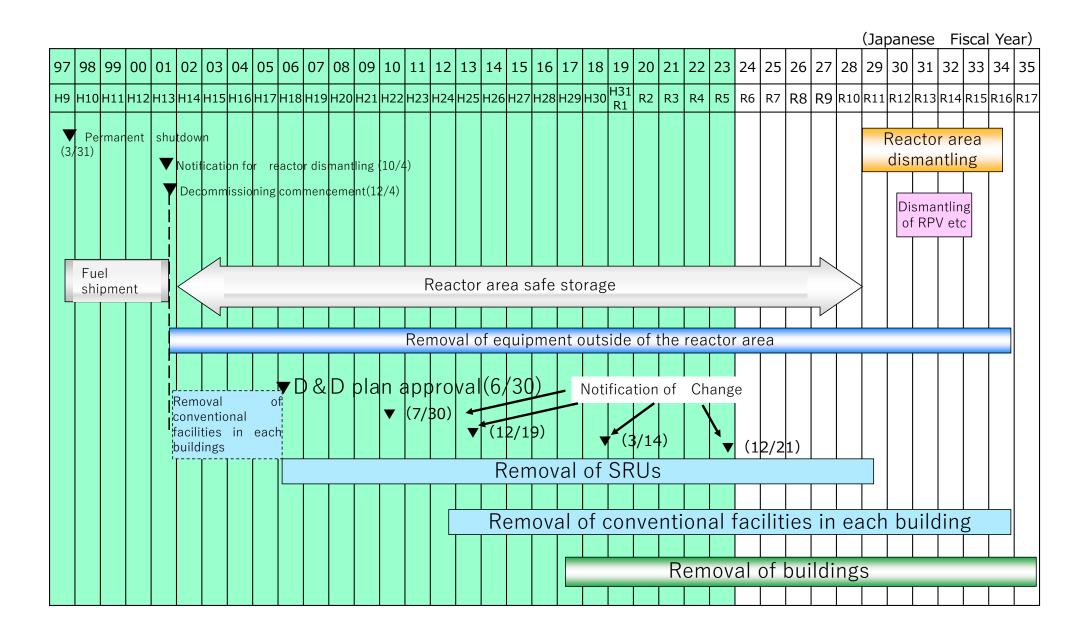
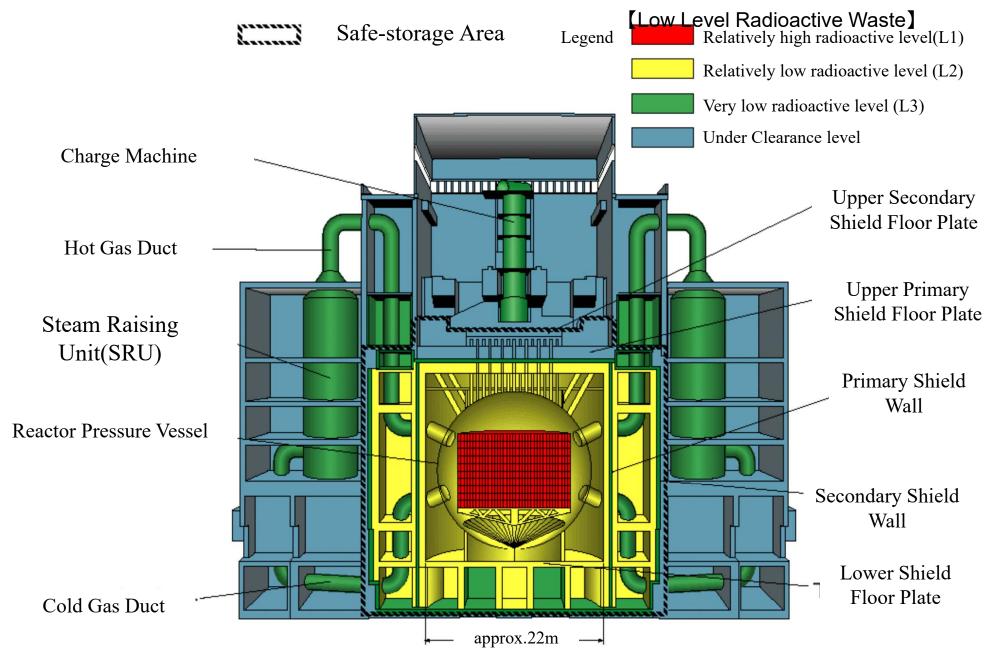

Safety review of Tokai L3 burial facility


October 2024
THE JAPAN ATOMIC POWER COMPANY
Satoshi Karigome


Contents

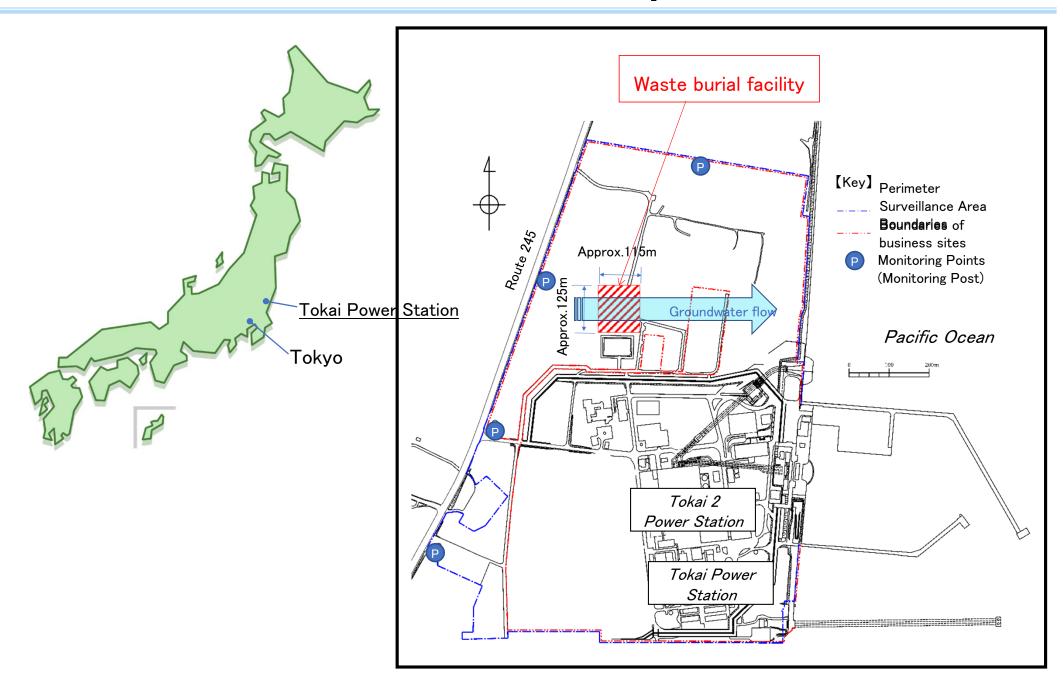
- 1. Status of Tokai decommissioning
- 2. Safety review for Tokai L3 burial facility
- 3. Operation plan of Tokai L3 burial facility (Tentative)
- 4. Structure of Tokai L3 burial facility after the changed examination policy
- 5. Evaluation of public radiation doses by Tokai L3 burial facility

1. Schedule of Tokai decommissioning

[ton]

		Operational	Decom	/D-4-1		
		wastes	1st Phase	2nd Phase	3rd Phase	Total
	Relatively high radioactive level (L1 waste)	30	0	0	1,530	1,600
LLW	Relatively low radioactive level (L2 waste)	4,210	340	630	7,900	13,100
	Very low radioactive level (L3 waste)	-	10	1,810	11,260	13,100
de	necessity to be alt as radioactive Clearance material)	-	1,400	2,840	35,930	40,200
No	on-radioactive waste	-	9,160	3,090	116,380	128,700
	Total	4,300	11,000	8,400	173,000	196,600

	Classification	Regulatory infrastructure	Upper limit Concentration (Bq/ton)	Disposal site
	Relatively high radioactive waste(L1)	Established	C-14:1E+16	Under investigation
LLW	Relatively Low radioactive waste(L2)	Established	C-14: 1E+11 Co-60: 1E+15	[Operational wastes] Rokkasho LLW Disposal Center [Decommissioning wastes] Under consideration
	Very low radioactive level waste(L3)	Established	Co-60 :1E+10	[JPDR] JAEA Tokai Research Center [JAPC Tokai-1] Under safety review
dea (Cl	necessity to be lt as radioactive earance terial)	Established	C-14: 1E+6 Co-60: 1E+5	Recycle or disposal an industrial waste


2. Safety review for Tokai L3 burial facility

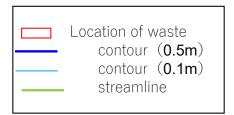
- 2015.July.: Submitted application
- 2016.Dec.: Revision application (1st time)
- 2018.Jul.: Completed a full explanation of the contents of the revised application form.
- 2019.Dec.: Revision of laws and regulations (1st time)
- ⇒Review of facility structure and reevaluation of radiation dose assessment due to changes in facility structure
- 2021.Oct.: Revision of laws and regulations (2nd time)
 - ⇒Changes in conditions for radiation dose evaluation, revaluation
- 2022.Aug.: Submitted documents for review complied with the amended law
 - ⇒Resumption of review
- 2023.Sept.: Regulatory comments on the Revision of facility structure
- ⇒Review of facility structure and reevaluation of radiation dose assessment due to changes in facility structure
- 2024.July.: Revision application (2nd time)
 - ⇒Resumption of examination

Fiscal	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
main engineering		\ Construc	ction .Commenc	ement of	operation	s						
Waste burial	Preparat	ory work		Wes	st side bur	rial trench	*				. »	
facility operation									East si	de burial t	rencn^	Cover soil ※

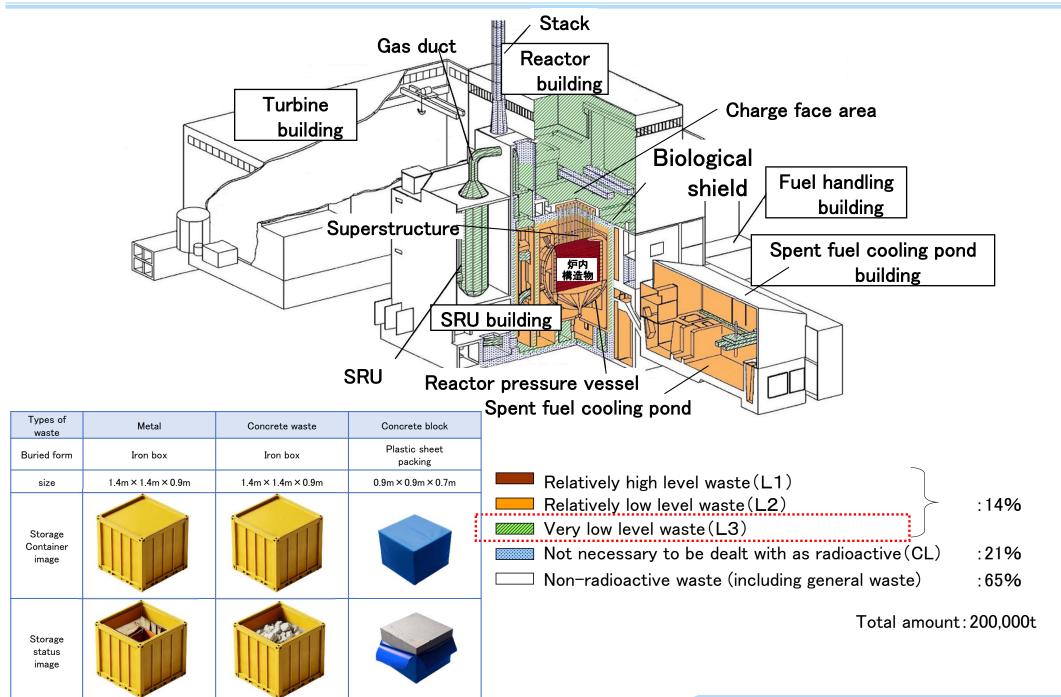
XCarried out according to the decommissioning process

3. Location of Tokai L3 burial facility

3. Groundwater level contour map



- Groundwater level at the survey target site
- Ground surface at study site: elevation 8.4m

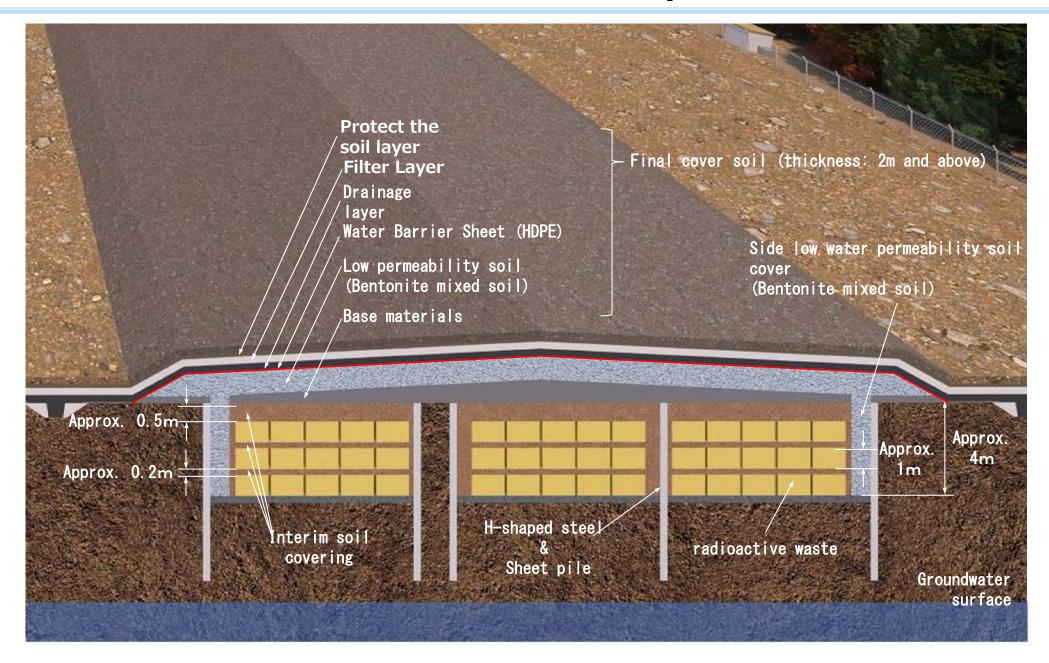

Groundwater level at the same point [D-4 hole]: T.P. 1.4 ~ 2.6m

(Annual fluctuation range1.2m)

Since the groundwater level contour line of the site is generally parallel to the coastline and lowers in the direction of the sea, groundwater might flow steadily toward the sea side.

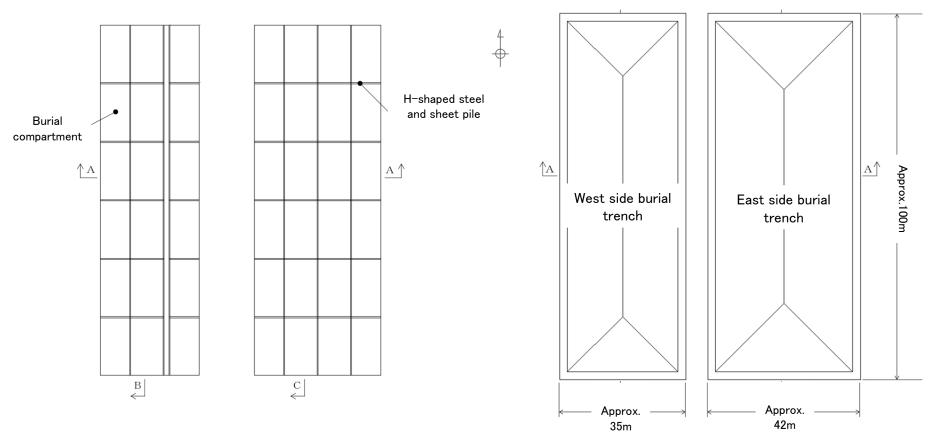
3. Waste buried at Tokai L3 burial facility

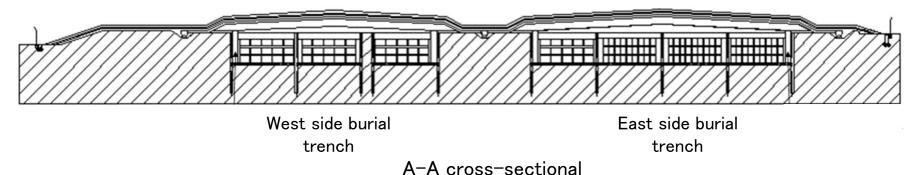
3. Waste buried at Tokai L3 burial facility

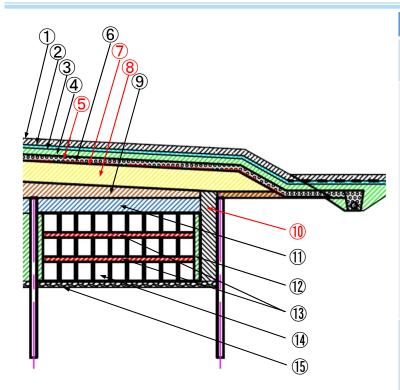

In order to prevent damage due to depression of bentonite mixed soil used for part of the upper cover of the waste burial site and to efficiently store waste, the disposal container has been changed to container without a fork base with

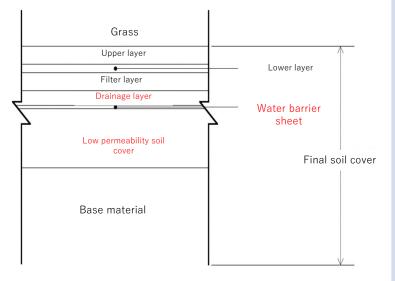
improved load-bearing performance.

11110101	Before			After		
waste	metal	Concrete debris	Concrete blocks	metal	Concrete debris	Concrete blocks
shape	the steel box is filled with sand Steel box	Flexible container	Plastic Sheet	the steel box is filled with sand	containers	No change
materi al	Carbon Steel	Polyethylene Polypropylene, etc.	Polyethylene, etc.	Carbo	n Steel	No change
size	1.4×1.4× 1.1m	Ф1.3×0.8	0.7 × 0.9 × 0.9m	1.4×1.	4×0.9m	No change

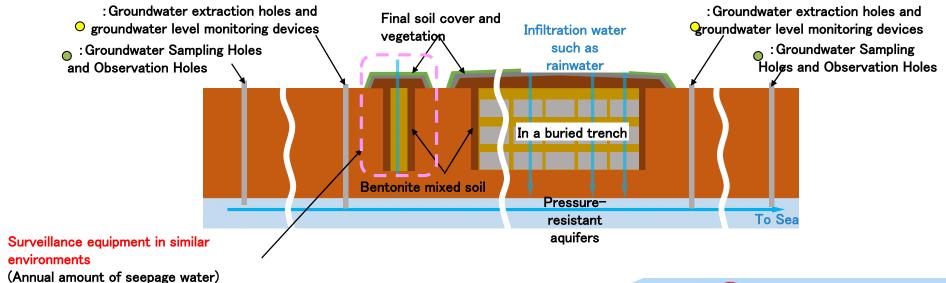

3. Overall logistics

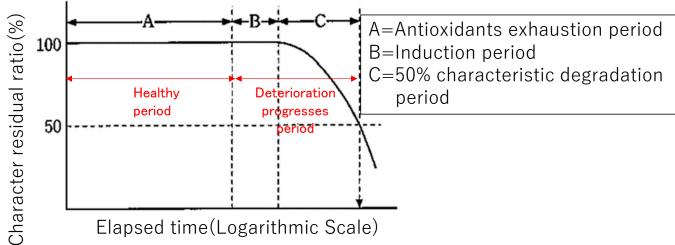

3. Structure of Tokai L3 burial facility (top view)




Burial compartment floor plan

Final cover soil plan


Cross-sectional view of a waste burial facility

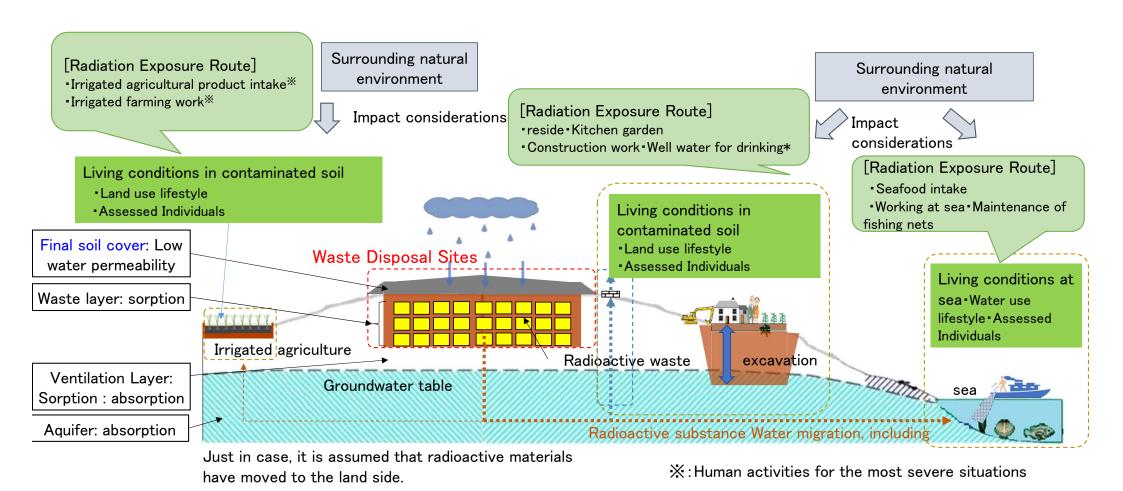

	Position	Role		
10	Grass	Drain surface water from rainfall and protect the soil cover surface from erosion by surface water		
	②Protective soil layer (Upper layer)	It has erosion resistance, water retention, and fertilizer retention properties to grow grass		
Fin	③Protective soil layer (Lower layer)	Prevents the outflow of fine particles from the upper layer to the filter layer and ensures appropriate drainage		
Final soil cove	4)Filter layer	Prevents the outflow of fine particles from the upper layer to the drainage layer and ensures appropriate drainage		
cover	⑤Drainage layer	Lateral drainage and water saturation time are shortened to minimize erosion and improve slope stability.		
	⑥Protective layers & Mats	It mitigates the impact of the filter layer during construction and prevents the water barrier sheet from damage		
	Water barrier sheet (HDPE)	Suppress the infiltration of rainwater and other waste layers from the top. In addition, the water barrier sheet		
	8 Low permeability soil cover (Bentonite mixed soil)			
Wa		Solid foundation for compaction of the upper layer, ensure sufficient bearing capacity		
Waste Di	Side low permeability soil cover (Bentonite mixed soil)	Suppress the infiltration of rainwater and other waste layers from the side		
ispo	①Soil cover in the middle i	Shielding radiation from waste layers		
Disposal Sites	①Fill with sand	Reduction of air in waste landfills / absorption of photogenic materials		
es	③Soil cover in the middle ii	Shielding radiation from waste layers \slash absorption of radioactive materials		
	(14) Filled sand (in the iron box)	Reduction of voids in the steel box \slash absorption of radioactive materials		
	15Base materials	Solid substrate for compaction of side low permeability soil cover, ensure sufficient bearing capacity		

- Surveillance measurements during the operation period
 - Monitoring will continue for about 50 years after the completion of soil covering.
 - > The monitoring target can be confirmed to meet the technical requirements, as shown in the table below.
 - > As for the condition of the soil cover, a similar environment is created to prevent destruction, and data is obtained from it

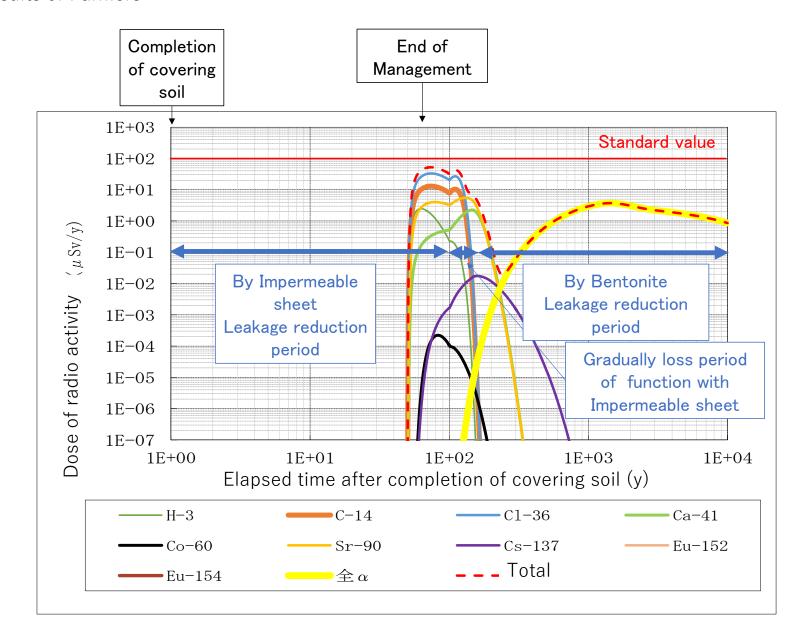
Target	Technical Requirements	Monitoring & Measurement Items	Monitoring and measuring equipment
		Concentration of radioactive materials	Groundwater Sampling Holes
Artificial and Natural Barriers (Entire waste burial facility)	absorption, Low water permeability	Groundwater level (groundwater flow field, hydraulic gradient, whether buried radioactive waste is directly immersed in groundwater, aquifer thickness)	Groundwater level monitoring device, Observation Holes
Artificial barriers (Surface water barrier, water barrier sheet, low permeability soil cover and side low water permeability soil cover)	Low water permeability	Annual infiltration water volume	Periodic inspections, in-situ tests in similar environments, Laboratory tests to complement it if necessary

- Concepts for Reducing Leakage of Radioactive Materials
 - Soil cover is carried out using natural materials that are stable for a long time.
 - > Soil cover surfaces are covered with grass to reduce erosion.
 - > A drainage layer is provided to drain rainwater that has seeped into the soil cover.
 - Bentonite mixed soils and water barrier sheets reduce contact between waste and rainwater
 - A bentonite mixed soil layer is provided to reduce the infiltration of seepage water from the side of the waste burial site.
 - ➤ Reduce the transfer of radioactive materials into groundwater by placing waste in a location that does not come into contact with groundwater.
- Target hydraulic conductivity of bentonite mixed soils.
 - > Set up so that the dose of exposure to the public can be reduced as much as possible.
 - The hydraulic conductivity is set at 1.0 × 10 to 10 m/s.
- Effect of water barrier sheets to reduce seepage water
 - > Use HDPE as a water barrier sheet
 - ➤ Since it is not a natural material, it is necessary to set a functional maintenance period due to deterioration. The most serious deterioration of HDPE is ultraviolet degradation and high-temperature deterioration, but this does not apply to the Tokai L3 burial facility
 - > Therefore, the main deterioration is set as oxidative degradation of the polymer, and the period that contributes to the reduction of seepage water is set to 150 years.

Period	purpose	Target	Criteria(mS v/y)	Note
Operation	Operation Management	Normal	1	
	Validation of	Normal	0.05	ALARA
	Design	Accident/abnorm al	5	
After	Validation of	Likely scenario	0.01	
institutional control	Design	Less likely scenario	0.3	
		Human intrusion	0.3	"1" if drilling resistance can be assumed such as concrete pit


Regulations for the burial of low-level radioactive waste are as follows:

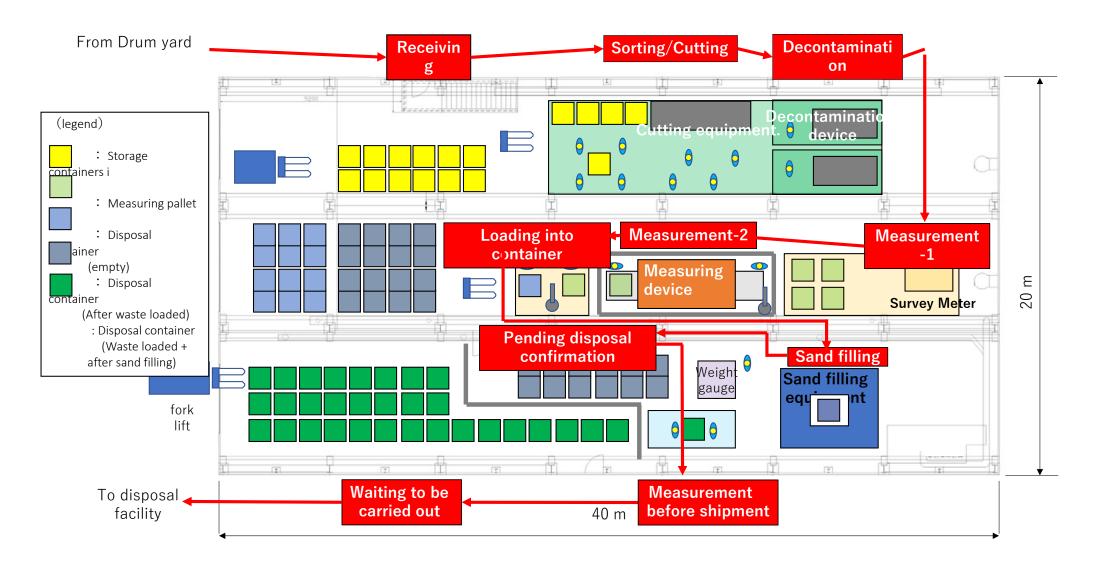
- L1 Burial Facility
 - > Waste is buried more than 70 meters underground from the surface of the earth.
 - \triangleright The evaluation scenarios are "natural event scenario (Standard value: 300 μ Sv/y)" and "boring scenario (Standard value: 20 mSv/v)"
- L2 Burial Facility
 - > Waste is buried underground less than 70 meters from the surface
 - > The radionuclides whose concentrations are capped in the regulations are C-14, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, α nuclides.
 - \triangleright The evaluation scenario is, [Natural Event Scenarios (Standard value: 10 μ Sv/y, 300 μ Sv/y)], [Anthropogenic Scenarios (Standard value: 1mSv/y) J
- L3 Burial Facility
 - Waste is buried underground less than 70 meters from the surface
 - > The radionuclides whose concentrations are set in the regulations are Co-60, Sr-90, and Cs-137
 - \triangleright The evaluation scenario is, [Natural Event Scenarios (Standard value: 10 μ Sv/v, 300 μ Sv/v)], [Anthropogenic Scenarios (Standard value: 300 μ Sv/y) J


Nuclides	L1 Burial Facility Concentration upper limit	L2 Burial Facility Concentration upper limit	L3 Burial Facility Concentration upper limit
C-14		$1.0 \times 10^5 \mathrm{Bq/g}$	-
Co-60		$1.0 \times 10^9 \text{Bq/g}$	1.0×10⁴Bq∕g
Ni-63		$1.0 \times 10^7 \mathrm{Bq/g}$	-
Sr-90	Not set	$1.0 \times 10^7 \mathrm{Bq/g}$	1.0×10¹Bq∕g
Tc-99		1.0×10^3 Bq/g	-
Cs-137		$1.0 \times 10^8 \text{Bq/g}$	1.0×10²Bq∕g
α		$1.0 \times 10^4 \mathrm{Bq/g}$	_

scenario	Standard value	Assessed Individuals	Routes of expos	sure	
Natural Event Scenarios	10 <i>μ</i> Sv ⁄ y	Resident	Residence		
			Kitchen garden		
			Seafood intake		
	300 <i>μ</i> Sv ∕ y	Fishermen	Seafood intake		
			Working out at sea		
			Maintenance of fishing nets		
		Farmers	Seafood intake		
			Residence		
			Kitchen garder	Exposure routes in	
			Well water drinking	which the radiation	
			Irrigated agricultural product intake	dose is most	
			Irrigated farming work	abundant due to the influence of CI-36	
		Construction	Seafood intake	illidelice of Of 30	
		Workers	Residence		
			Kitchen garder		
			Well water drinking		
			Irrigated agricultural product intake		
			Construction		
		Resident	Seafood intake		
			Residence		
			Kitchen garder		
			Well water drinking		
			Irrigated agricultural product intake		

OExposure routes to be evaluated in natural event scenarios

OEvaluation Results of Farmers


THE JAPAN ATOMIC POWER COMPANY

4. Evaluation of public dose from Tokai L3 burial facility 26

Scenario	Standard value	Assessed Individuals	Routes of exposure
Anthropogenic Scenarios	300 <i>μ</i> Sv/y	Those who are involved in the construction industry (Metal bias)	Construction work (uneven distribution of metals)
	Construction Workers (Uneven distribution of concrete)		Construction work (uneven distribution of concrete)
		inhabitant (Metal bias)	Residence (metal bias)
			Family garden (metal bias)
			Seafood intake
		resident	Residential (uneven distribution of concrete)
		(Uneven distribution of concrete)	Kitchen garden (concrete unevenly distributed)
			Seafood intake

OExposure routes to be evaluated Surrounding natural environment in anthropogenic scenarios [Radiation Exposure Route Impact [Radiation] Living conditions Construction work Living conditions in considerations Exposure Route Residence at sea mixed soils Seafood picking Family garden •Water use lifestyle ·Land use lifestyle · Assessed Individuals subject agricultural Individuals to evaluation products intake Waste Disposal Sites (Lifestyle on excavated soil directly above the buried site) Low Water Permeability: (Lifestyle after loss Loss low water radioactive waste permeability) Waste layer: absorption Groundwater table **Drilling** range Ventilation Layer: Sea Sea absorption radioactive Aguifer: waste Mixed soil excavated up to the bottom of the waste burial site absorption Migration of groundwater with radioactive materials after loss of low permeability.

VLL waste pretreatment flow

Thank you for your attention! 御静聴有難うございました。