Dedicated to the people who lost their lives and injured by the 2023 Pazarcık and Ekinözü Earthquakes of Türkiye

A QUICK REPORT ON PAZARCIK AND EKİNÖZÜ EARTHQUAKES (TÜRKİYE) OF FEBRUARY 6, 2023

Ömer AYDAN* and Reşat ULUSAY**

* University of the Ryukyus, Okinawa, Japan
** Hacettepe University, Ankara, Türkiye

15 February 2023
A QUICK REPORT
ON
PAZARCIK AND EKİNÖZÜ EARTHQUAKES (TÜRKİYE) OF FEBRUARY 6, 2023

Ömer AYDAN* and Reşat ULUSAY**

* University of the Ryukyus, Okinawa, Japan
** Hacettepe University, Ankara, Türkiye

ATTENTION
Please note that this document is prepared with a sole purpose to provide an overview of various aspects of the earthquake for researchers, who would be involved with this earthquake.

The pictures and some figures are obtained from various sources with due references available in various web-sites. The figures drawn by the authors of this report are cited as (DbA) next to them.

The major source of the pictures relevant to the aspects of this document are obtained from the web-sites of the mass media of Türkiye and relevant institutes and they are gratefully acknowledged for the information through images and data of the earthquake:

https://www.aa.com.tr/tr
https://www.dha.com.tr/
https://www.trt.net.tr/
https://www.emsc-csem.org/#2
https://www.usgs.gov/
https://www.mta.gov.tr
https://www.koeri.boun.edu.tr
https://www.afad.gov.tr
https://www.maxar.com/open-data/turkey-earthquake-2023
LOCATIONS
MAIN CHARACTERISTICS OF THE EARTHQUAKES
TECTONICS
GEOLOGY
PRE- AND POST- SEISMICITY
FOCAL MECHANISMS AND ASSOCIATED STRESS FIELD
SURFACE DEFORMATION FROM GPS and DINSAR
STRONG MOTION RECORDS
TRANSPORTATION FACILITIES
 Roadways
 Tunnels
 Railways
 Ports
GEOTECHNICAL DAMAGES
 Soil Slopes
 Rock Slopes
 Rock Falls
 Ground liquefaction and lateral spreading
DAMS
LIFELINES
DAMAGED AND COLLAPSED STRUCTURES
 RC Buildings
 Masonary Structures
 Historical Structures
SEARCH AND RESCUE
EVACUATION AND IMMEDIATE HOUSING
UNUSUAL OBSERVATIONS
References
EKİNÖZÜ EARTHQUAKE

EMSC manual location
M 7.5 2023/02/06 - 10:24:19 UTC
Lat: 38.11 Lon: 37.28 Depth: 10 km
Population: 57 Millions inhabitants in a radius of 400 km from the earthquake epicenter

(from CSEM-EMSC)
The Pazarcık earthquake occurred at 4:17 (TST) on February 6, 2023 and the Ekinözü earthquake occurred at 13:24 on the same day after about 9 hours. The earthquake involve rupturing on the segments of East Anadolu Fault (EAF) and Dead-Sea Fault. The initial total length of Pazarcık earthquake was about 210-230 km and reach to a total length of 400-450 km. Ekinözü earthquake E-W trending Çardak and Sürgü faults with a total length of 120-130 km. As of 15 February 2023, Number of casualties is 35,418. Number of injured people is more than 105,505. Number of after shocks is more than 1,900. 10 provinces with a total population of 15 million people were affected.
MAIN CHARACTERISTICS OF THE EARTHQUAKES

PAZARCIK EARTHQUAKE

The earthquake occurred at 4:17:35 (TST) (1:17:35 GMT) on NE-SW trending fault with sinistral slip. This fault might be a combined slip of East Anatolian Fault and Dead-Sea Fault. Moment magnitude of this earthquake has been estimated by different institutes and they range between 7.7 and 8.0.

<table>
<thead>
<tr>
<th>Institute</th>
<th>Mw</th>
<th>LAT</th>
<th>LON</th>
<th>Depth (km)</th>
<th>Fault Plane</th>
<th>Auxiliary Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCMT</td>
<td>7.8</td>
<td>37.6</td>
<td>37.5</td>
<td>15</td>
<td>54 70 11</td>
<td>320 80 160</td>
</tr>
<tr>
<td>USGS</td>
<td>7.9</td>
<td>37.4</td>
<td>37.8</td>
<td>33</td>
<td>234 79 14</td>
<td>142 76 169</td>
</tr>
<tr>
<td>KOERI</td>
<td>7.7</td>
<td>37.1</td>
<td>37.1</td>
<td>10</td>
<td>222 64 -27</td>
<td>324 65 -152</td>
</tr>
<tr>
<td>ERD</td>
<td>7.8</td>
<td>37.2</td>
<td>37.1</td>
<td>18</td>
<td>233 74 18</td>
<td>140 77 168</td>
</tr>
<tr>
<td>IPGP</td>
<td>8.0</td>
<td>37.2</td>
<td>37.0</td>
<td>13</td>
<td>230 81 -18</td>
<td>323 72 -171</td>
</tr>
</tbody>
</table>

Among all focal plane solutions, focal plane by KOERI is close to the actual situations.

(from CSEM-EMSC)
EKİNÖZÜ EARTHQUAKE

The earthquake occurred at 13:24:49 (TST) (10:24:49 GMT) on almost E-W trending fault with sinistral slip. This fault might be a combined slip of Çardak and Sürgü Faults. Moment magnitude of this earthquake has been estimated by different institutes and they range between 7.6 and 7.7.

<table>
<thead>
<tr>
<th>Institute</th>
<th>Mw</th>
<th>LAT</th>
<th>LON</th>
<th>Depth (km)</th>
<th>Fault Plane Strike</th>
<th>Fault Plane Dip</th>
<th>Fault Plane Rake</th>
<th>Auxiliary Plane Strike</th>
<th>Auxiliary Plane Dip</th>
<th>Auxiliary Plane Rake</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCMT</td>
<td>7.7</td>
<td>38.1</td>
<td>37.2</td>
<td>12</td>
<td>261</td>
<td>42</td>
<td>-8</td>
<td>358</td>
<td>84</td>
<td>-132</td>
</tr>
<tr>
<td>USGS</td>
<td>7.6</td>
<td>38.0</td>
<td>37.2</td>
<td>19</td>
<td>276</td>
<td>82</td>
<td>-6</td>
<td>6</td>
<td>85</td>
<td>-172</td>
</tr>
<tr>
<td>KOERI</td>
<td>7.6</td>
<td>38.0</td>
<td>37.3</td>
<td>10</td>
<td>273</td>
<td>67</td>
<td>-9</td>
<td>6</td>
<td>81</td>
<td>-157</td>
</tr>
<tr>
<td>ERD</td>
<td>7.6</td>
<td>38.0</td>
<td>37.2</td>
<td>16</td>
<td>174</td>
<td>90</td>
<td>13</td>
<td>358</td>
<td>73</td>
<td>174</td>
</tr>
<tr>
<td>IPGP</td>
<td>7.7</td>
<td>38.0</td>
<td>37.2</td>
<td>13</td>
<td>270</td>
<td>60</td>
<td>-9</td>
<td>5</td>
<td>82</td>
<td>-150</td>
</tr>
</tbody>
</table>

Earthquake occurred in north dipping fault and large ground susidence occurred on the northern part.

(from CSEM-EMSC)
Estimation of the earthquake parameters from fault length (based on relations of Aydan, 2012, 2023). AMAX and VMAX are computed for a hypocenter distance of 14 km and surface shear wave velocity of 300 m/s.

<table>
<thead>
<tr>
<th>Length</th>
<th>Mw</th>
<th>AMAX (gals)</th>
<th>VMAX (kines)</th>
<th>DMAX (cm)</th>
<th>Tr (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>7.6</td>
<td>1020,3</td>
<td>72.9</td>
<td>506</td>
<td>35.6</td>
</tr>
<tr>
<td>195</td>
<td>7.8</td>
<td>1217.6</td>
<td>87.0</td>
<td>721</td>
<td>45.8</td>
</tr>
<tr>
<td>222</td>
<td>7.9</td>
<td>1320.7</td>
<td>94.3</td>
<td>848.4</td>
<td>51.4</td>
</tr>
<tr>
<td>255</td>
<td>8.0</td>
<td>1440.6</td>
<td>102.3</td>
<td>1009.5</td>
<td>58.2</td>
</tr>
</tbody>
</table>

Initial fault length was about 200-220 km and it extended to about 400 km.

(Modified from Aydan, 2012)
(From Ulusay and Aydan (2005) based on the original drawing by Gülen et al. (2002))

(From Palutoğlu and Şaşmaz, 2017)
GEOLOGY
Regional Geology of the Affected Region

(Yılmaz et al.,1993)
Geology and Faults of Hatay (Antakya)

(From Korkmaz, 2006)
Geology and Faults of Osmaniye

(From MTA)

(From Emre et al., 2013)
Geology and Faults of Kahramanmaraş

(From Sandal and Karademir, 2013)

(From Emre et al., 2013)
Geology and Faults of Malatya

(From Önal, 2007)
PRE- AND POST-SEISMICITY

(From Palutoğlu and Şaşmaz, 2015)

(DbA, base map by Aydan, unpublished)
The Pazarcık earthquake involved EAFZ (2 segments) and DSF-Death Sea Fault (1 segment). The total length of the surface rupture could be in the order of 210-230 kms.
Inferred crustal stresses of the epicentral area for focal plane solution by KOERI using Aydan’s Method (Aydan 2000a, 2016, 2020). KOERI focal mechanism involves normal component as observed in-situ (DbA).
Inferred crustal stresses of the epicentral area for focal plane solution by KOERI using Aydan’s Method (Aydan 2000a, 2016, 2020). Pazarcık earthquake greatly altered the stress state. On the northern side, some downward motions are reported (DbA)
CRUSTAL STRESSES

Annual principal stress rates of Türkiye (Aydan, 2000b) inferred from GPS measurements

Maximum horizontal stress directions (Aydan, 2020)
Displacement reflects the expected faulting movements

(From Nevada Geodetic Laboratory
/NVGeodeticLab/status/1625241970460491777/photo/1)
The Pazarcık earthquake caused about 5-6 m sinistral slip and the distribution has a parabolic shape. While the Ekinözü earthquake has the same sense of relative slip, the shape is triangular.
Relative slip is generally more than 300 cm in many rupture observations and the southern rupture has also normal component. This may also explain why some part of İskenderun city subsided and immersed by sea-water. Şekeroba – Kırıkhan segment is on Dead Sea fault.
Turkish Strong Motion Network (TADAS) has recorded the motions induced by Pazarcık and Ekinözü earthquakes. In this report, the strong motion caused by the Pazarcık earthquakes are reported and discussed. The stations along the fault rupture and Arabian Plate recorded much higher ground motions and duration of shaking was more than 70 seconds and it was about more than 220 seconds at Şanlı Urfa. Next figures show strong motion records for selected 16 cities. Response spectra of 12 cities are plotted. The response spectra generally exceed the seismic design spectra of Türkiye. Furthermore, maximum ground accelerations in affected cities exceed the maximum ground acceleration assumed in the seismic code particularly at locations near earthquake rupture. This simply implies that the design code should be revised.
Response Spectra of the selected stations

Pazarcik 4615
Shaking Direction
- EW (582.210)
- NS (583.648)
- UD (664.181)

Nurdagi 2712
Shaking Direction
- EW (602.658)
- NS (554.850)
- UD (346.122)

Narli NAR
Shaking Direction
- EW (619.707)
- NS (784.569)
- UD (947.680)

Turkoglu 4616
Shaking Direction
- EW (502.870)
- NS (652.757)
- UD (1492.823)

Islahiye 2718
Shaking Direction
- EW (644.970)
- NS (702.422)
- UD (585.788)

Hassa 3138
Shaking Direction
- EW (746.664)
- NS (888.730)
- UD (1296.273)
Response spectra of selected acceleration records near the fault

TSC: Turkish Seismic Code
Response spectra of acceleration records at the selected heavily damaged cities

TSC: Turkish Seismic Code
Attenuation of Strong Motions with Distance

2023 Pazarcik Earthquake

$V_s=272\text{ m/s}$

$M_W=7.8$

$M_L=7.7$

Orginal drawings from Aydan 2012, DbA

Pazarcik Earthquake

$M_W=7.8$

$V_s=272\text{ m/s}$

Orginal drawings from Aydan 2012, DbA
The vertical component of strong motions near the fault rupture is quite high and it decreases with distance.

Most of RC buildings have 5 to 14 stories. The estimated natural frequency for the first mode ranges between 0.3 to 0.9 seconds, which might have an influence on their collapses. If the design and construction were properly done according to the Turkish Seismic Code, this scale damage would not occur.
The map of Damaged Roadways from KGM (General Directorate of Highways of Turkey) (yellow lines indicates roadways closed to traffic due to damage)

Damage occurred due to
1) Separation or collision of bridge deck with abutments
2) Faulting induced deformations
3) Retaining wall failures
4) Deformation of pavement (separation or buckling=)
5) Fall of bridge decks
6) Tunnel damage
7) Embankment failures

The above damages occurred along Tarsus-Adana-Gaziantep Highway, Malatya Adıyaman Highway, Kahramanmaraş-Malatya highways.
Separation or collision of bridge deck with abutments

Bridge deck fall

(Photos: Internet)
Hatay Airport road

(Photos: Internet)
Damage of Tarsus Adana Gaziantep (TAG) near Islahiye by the fault rupture

(Photos: Internet)
Toppled stationary vehicles

Adıyaman-Malatya highway

(Photos: Internet)
Tunnel Damages

Rockfalls at the portal and spalling of concrete lining of the Erkenek Tunnel occurred as reported by KGM. One of Erkenek Tunel tubes is closed to traffic while the other is utilised for traffic despite some spalling location of the lining were reported at some locations. The tunnel was almost on the activated Erkenek fault.

Location of Erkenek tunnel

Traces and Rockfalls above the portals of Erkenek tunnel

(Photo: Internet)
Spalling of concrete linings in Erkenek Tunnel

(Photos: Internet)
Locations of the damaged railway lines (from TCDD)

Damage was mainly caused by deformation of rails where ever earthquake faults crossed. In addition, trains and wagons were derailed or toppled. Rockfalls and slope failures also caused obstructions.

(Photos: Internet)
Derailed and toppled wagons at Gölbaşı Train Station

(Photos: Internet)
Deformed rails in Gölbaşı

(Photos: Internet)
Airports of Türkiye. The circle indicates the airports in the epicentral area.

(Photos: Internet)

Gaziantep Airport at the time of Pazarcık earthquake occurred. Note the small pieces of debris falling from the suspended ceilings. Similar situation occurred at Malatya Airport.
Hatay Airport

Runway buckled at Hatay Airport

Under reparation

Runway was repaired on February 11, 2023

Test flight on February 11, 2023

First flight was done on February 12, 2023
Ports

Iskenderun Port

(Photos: Internet)
GEOTECHNICAL DAMAGES

Rockfalls

(Kenov: Internet)
Slope Failures (Landslides)

Kuşkayaşı

Kahramanmaraş-Adıyaman Highway

Tevekelli

Tepehan

Islahiye

Islahiye

(Photos: Internet)
Liquefaction and Lateral Spreading

Antakya-Reyhanlı Highway

Near Çöçelli village

Gölbaşı

(Photos: Internet)
Sinkholes in the Gaziantep Yavuzlar District. (Photos: Internet)
Atatürk Dam
The third largest rockfill dam in the world. 169 m high and epicentral distance is about 90 km. No damage was reported.

Areal view after the earthquakes

Aerial inspection by the minister

(Photos: Internet)
Landslide Dams

Islahiye

Tepehan (Photos: Internet)
LIFELINES

Toppled Pylon

Repair of water pipe

(Photos: Internet)
The totally collapsed or heavily damaged school, residential and office buildings had mainly 3-14 stories. These structures are designed as moment-resistant frame structures with in-fill walls made of hollow bricks. The failure of RC structures was due to soft-story (weak-floor) situation as it is a common problem resulting in high casualties in earthquakes since 1960. The ground floors of collapsed buildings were mostly used as either shops, depots or garages. As a result, this type of usage constitutes a weak(soft)-floor situation. Furthermore, many buildings had heavy balconies of cantilever type.

The causes of the damage were almost the same as those seen in the previous earthquakes of Turkey. The causes listed below are taken from the reports by the first author on March 13, 1992 Erzincan Earthquake with few amendments and additions from the reports of the Turkish earthquakes occurred after 1992 (Aydan et al., 1998: Aydan et al., 2000a, b; Ulusay et al., 2002; Aydan et al., 2003; Aydan et al., 2012):

Poor workmanship: There are two kinds of poor workmanship. One of them is that the connections of columns and beams were very weak since the connections of steel bars were not properly done. The second one is that the granulometry of the sand and gravel of concrete was very poor and the range was wide. In addition, big chunks of gravel blocked the concrete during casting at locations where steel connections were dense and this resulted in very porous and weak connections. During shaking, it seems that concrete at the connections first failed and this subsequently caused the buckling of steel bars at such locations and rupturing in-fill hollow brick walls in a brittle sense. As a result, the collapse of buildings ended up in a pancake mode.

Construction negligence and lack of moral: One of the most striking construction negligence was the confinement of concrete at the beam-column connections in-spite of the Turkish design code for seismic regions. As stir-ups were very few at such locations, the failure of concrete was very brittle and it could not absorb the work done by the earthquake forces.

Resonance: Natural periods of collapsed buildings mostly coincided with those of the input waves and this resulted in the resonance-like shaking of structures and their subsequent collapses.
Soft Story: Many buildings had shops at their ground floor. As there are generally no shear-walls to take up the load during earthquakes, the total load is transferred onto the columns. The super structure acts as a top-heavy structure on the columns and in-fill walls, which are in poor contact with columns and beams, has no effect against the earthquake loading and they fail subsequently.

Pounding of adjacent structures: Buildings at the corners of streets were mostly collapsed as a result of pounding with the adjacent building.

Buildings with problematic issues mentioned above

(Photos: Internet)
Views of Building Damages

(Photos: Internet)

Kahramanmaraş

Antakya (Hatay)

Diyarbakır

Gaziantep
Gaziantep

Kahramanmaraş

Diyarbakır

Antakya

Adıyaman

(Photos: Internet)
Photos: Internet
Many countries continue to direct their search and rescue teams to Turkey.

<table>
<thead>
<tr>
<th>Country</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azerbaijan</td>
<td>725</td>
</tr>
<tr>
<td>USA</td>
<td>159</td>
</tr>
<tr>
<td>Germany</td>
<td>50</td>
</tr>
<tr>
<td>Albania</td>
<td>63</td>
</tr>
<tr>
<td>Austria</td>
<td>105</td>
</tr>
<tr>
<td>BAE</td>
<td>32</td>
</tr>
<tr>
<td>Belarus</td>
<td>104</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>59</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>59</td>
</tr>
<tr>
<td>Algeria</td>
<td>89</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>68</td>
</tr>
<tr>
<td>Denmark</td>
<td>82</td>
</tr>
<tr>
<td>El Salvador</td>
<td>100</td>
</tr>
<tr>
<td>Armenia</td>
<td>57</td>
</tr>
<tr>
<td>Estonia</td>
<td>35</td>
</tr>
<tr>
<td>Palestine</td>
<td>35</td>
</tr>
<tr>
<td>France</td>
<td>204</td>
</tr>
<tr>
<td>South Africa</td>
<td>69</td>
</tr>
<tr>
<td>South Korea</td>
<td>118</td>
</tr>
<tr>
<td>Georgia</td>
<td>100</td>
</tr>
<tr>
<td>Croatia</td>
<td>40</td>
</tr>
<tr>
<td>India</td>
<td>201</td>
</tr>
<tr>
<td>Holland</td>
<td>150</td>
</tr>
<tr>
<td>Iraq</td>
<td>77</td>
</tr>
<tr>
<td>England</td>
<td>80</td>
</tr>
<tr>
<td>Iran</td>
<td>150</td>
</tr>
</tbody>
</table>

The total number of personnel sent to the earthquake zone.

(Photos: Internet)
Turkish Ambassador thanking to Japanese Rescue Team

Korean Rescue Team

Turkish governmental airplanes played great role in transferring injured people to the hospitals in non-affected cities

Turkish Army, Miners and AFAD played great role in rescue operations
EVACUATION AND IMMEDIATE HOUSING

TCG for evacuation peoples

Tent village at Gaziantep

Traditional Turkish Tents 'Yurts' by Kırgızistan

Kızılay (Red Crescent) offers hot meal.

Field hospital

(Photos: Internet)
Earthquake lights occurred during the fault rupture process. The authors also observed the same phenomenon during 1999 Kocaeli Earthquake (Aydan et al., 2000a) and in laboratory experiment on rocks.

UNUSUAL OBSERVATIONS

Barking dogs just before the earthquake

Blue lightning in Hatay

Blue lightning in Adıyaman

(Photos: Internet)
Earthquake lights in Kahramanmaraş

Just Before earthquake

City lights are partially off due to automatic shutdown of power system

During earthquake

(Photos: Internet)
Before the earthquake transparent Balıklıgöl, Şanlı Urfa

After the earthquake muddy Balıklıgöl, Şanlı Urfa

Before the earthquake transparent Gökpınar Lake, Gürün, Sivas (124 km from M7.8 epicenter)

After the earthquake muddy Gökpınar Lake, Gürün, Sivas

(Photos: Internet)
References

Aydan, Ö., 2000b. Assessment of annual strain rate distributions of Turkey from GPS measurements. Yerbelimleri, 22, 21-31 (Makalenin başlığı hatalı yazılmış, düzeltilmi)

Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü (KRDAE), Bölgesel Deprem-Tsunami İzleme Ve Değerlendirme Merkezi (BDTİM) http://www.koeri.boun.edu.tr/sismo/2/tr/.

MTA, 2023. 06 Şubat 2023 Pazarcık (Kahramanmaraş) (Mw 7,7) ve Elbistan (Kahramanmaraş) (Mw 7,6) depremleri bilgi notu. MTA Jeoloji Etütleri Daiesi Başkanlığı, Ankara 10 s.

