

家村の主な研究歴

サン ろいナンド地震(San Fernando) 197/年(昭和46)2月9日 M 6.6

スライド 17

Lenovo, 2019/10/18

兵庫県南部地震(1995.1.17) M=7.2

• 都市直下地震

- ・ 震度7(激震)の地震の帯
- ・家屋の倒壊による死者約5千人
- ・ 高架橋、鉄道、港湾などインフラの被害大
- ・81年以前の建物の被害大
- 都市ライフラインの被害大
- ・火災も発生

兵庫県南部地震(1995)により崩壊した 阪神高速道路3号線ピルツ型高架橋

脆弱で崩壊した橋脚と、粘りを示した橋脚

阪神高速3号 弁天エ区に於ける 桁一柱合結高架橋の崩壊

許容塑性率だけでは、設計強度を 安全かつ十分に低減できない

追加的な変形性能と 減衰性能が必要

 所属団体 橋梁名 または 所属団本 		橋梁形式	支間長(m) (完成年)	適用デバイスの種類		
港大橋	阪神高速道路 日本	トラス橋	235+510+235 (1974年)	床免震構造 (すべり免震支承+ 積層ゴム支承) 制震ブレース構造 (座屈拘東ブレース BRB) (鋼製軸降伏型ダンパー)		
天保山大橋	阪神高速道路 日本	斜張橋	120+350+170 (1988年)	ガセット部せん断パネル (鋼製せん断降伏型 ダンパー)		
東神戸大橋	阪神高速道路 日本	斜張橋	149+355+149 (1992年)	縦おきサンドウィッチ型 高減衰ゴムダンパー 回転型粘性ベーンダンパー		
弁天連続 高架橋	阪神高速道路 日本	ラーメン型連続 曲線高架橋	19径間全長565m 最大スパン50m (1996年)	橋脚下端免震 (LRB)		
岸和田大橋	阪神高速道路 日本	アーチ橋	95+255+95 (1993年)	支承部せん断パネル (鋼製せん断降伏型 ダンパー)		
ベネシア・ マルテネス橋	カルトランス (米国)	トラス橋	最大スパン161m 全長1,894m	球面摩擦滑り免震支承 (FPB)		
コロナド橋	カルトランス (米国)	鋼箱桁橋	最大スパン66m 17径間	鉛入・免震ゴム支承		
ゴールデン ゲイト橋	カルトランス (米国)	吊り橋	343+1281+343 (1937年)	 免震支承(アプローチ桁部) 粘性ダンパー (主桁の塔部,アバット部) サドルの可動化 		
リオン・ アンティリオン 橋	ギリシャ	 5径間連続 鋼・コンクリート 複合斜張橋 	286+560+560 +286 (2004年)	粘性ダンパー (主桁と塔部の間)		
鶴見つばさ橋	首都高速道路 日本	1面吊り斜張橋	255+510+255 (1994年)	弾性拘束ケーブル		

阪神高速3号線 弁天工区の橋脚下端免震による改築

実験結果 最大応答値									
	ダンパー無し	ダンパー有り							
析一橋脚 相対変位(m)	0.3579	0.1149							
桁一橋脚 相対速度(m/s)	1.0899	0.8123							
桁 絶対加速度(m/s²)	0.9842	1.6810							
応答低減比率:約30.6%(相対変位) 65									

カルトランスにおける 長大橋の免震・制震

- Benicia Martinez 橋
- Golden Bridege
- East Bay Bridege

負剛性減衰力の有効性の発見と 新ダンパーの開発

・ヴァリアブルダンパーの最適制御中に 負剛性の出現を発見

・負剛性ダンパーの有効性を
 ベンチマークテストにより確認

・スカイフックダンパーも、負剛性減衰力を
 発生することを、理論的に発見

 ・ 鹿島のセミアクチブダンパーも 負剛性を出現

Application of PNS Damper to the Benchmark Control Problem for Cable-stayed Bridges (Results of Evaluation Criteria)

	EI C	El Centro		Mexico		Gebze	
Evaluation Criteria	Viscous	PNS	Viscous	PNS	Viscous	PNS	
J1: tower shear force at base	0.334	0.327	0.479	0.448	0.482	0.467	
J2: tower shear force at deck level	1.016	0.933	1.137	1.047	1.234	1.193	
J3: tower moment at base	0.300	0.248	0.607	0.504	0.532	0.491	
J4: tower moment at deck level	0.638	0.516	0.578	0.536	1.094	0.890	
J5: deviation of cable tension	0.167	0.175	0.063	0.060	0.123	0.117	
J6: deck displacement	1.340	1.110	2.511	2.178	2.798	2.476	
J7: normed J1	0.227	0.213	0.405	0.375	0.412	0.366	
J8: normed J2	0.989	0.907	1.015	0.913	1.220	1.127	
J9: normed J3	0.297	0.259	0.513	0.420	0.567	0.478	
J10: normed J4	0.834	0.761	1.103	0.955	1.195	1.066	
J11: normed J5	0.024	0.023	0.009	0.009	0.016	0.015	
J12: force by control devices	3.529e-3	2.846e-3	1.471e-3	1.116e-3	3.922e-3	3.710e-3	
J13: stroke of control devices	0.876	0.660	0.404	0.352	1.449	1.320	
J16: number of control devices	20	20	20	20	20	20	
J17: number of sensors	0	4	0	4	0	4	

- •木造90年
- 耐震補強だけでなく、水周りも改修
- 屋根瓦を軽く、壁パネルで偏心を除去
- ・仕口ダンパーで、減衰性能を確保
- ・
 震度7にも対応
- ・新築の60%の支出
- ・古い木造の家は保存された

ご清聴ありがとうございました

- 免震・制震デヴァイスは、まだまだ新開発の余地のある分野です。
- 皆様の、積極的な挑戦を期待しています。