

粒状体地盤材料の弾性波伝播特性に関する 室内実験と個別要素法解析

東京大学生産技術研究所 助教

大坪正英(桑野研究室)

東京大学 生産技術研究所 Institute of Industrial Science. The University of Tokyo

粒子間の接触によって 地中応力を伝達する材料

珪砂

ガラスビーズ材料 (研究目的)

川砂

応力伝達 光弾性による可視化

Majmudar & Behringer, 2005

Majmudar et al., 2008

地盤剛性率

弾性波検層

発表内容

粒状体地盤材料(細砂ー礫材)に対する

- 1) 弾性波速度の密度・拘束圧依存性
- 2) 土粒子堆積方向による速度異方性
- 3) 細粒分混じり材料の周波数応答特性

地盤の巨視的な応答を土粒子スケール挙動で説明する 研究手法:室内実験+個別要素法数値解析(DEM)

ディスクトランスデューサーの開発

三軸試験装置 H150×*φ*75mm

2種類弾性波

大型三軸試験装置 H500×235×235mm

9種類弾性波

弾性波計測手法

弾性波計測手法

個別要素法(DEM)数値解析

DEMソフトウェア: LAMMPS (オープンソース)

✓ 砂粒/ガラスビーズの物性
 ✓ ヘルツーミンドリン接触理論

法線バネ:非線形 接線バネ:バイリニア

2球体剛結

個別要素法(DEM)数値解析

P波伝播

S波伝播

室内試験と数値解析の比較

発表内容

粒状体地盤材料(細砂ー礫材)に対する

1)弾性波速度の密度・拘束圧依存性

2) 土粒子堆積方向による速度異方性

3) 細粒分混じり材料の周波数応答特性

弾性波速度の密度依存性

密度による速度の増大 → *粒子間の接触点数が増加するため*

接触点の可視化実験

X線マイクロCT

棏 墨汁による着色実験

Figure 3. Print of contact points on ballotini: (a, b) visual and engaged contacts from test case 1 (11 kPa) and (c) engaged contacts from test case 2 (703 kPa) (Black arrows indicate the center of engaged contacts).

(a) (b) Figure 4. Print of contact points on wall after test case 3 (2010 kPa): (a) magnified and (b) view of the mold.

Otsubo 2016; Otsubo et al, 2015

弾性波速度の拘束圧依存性

深度による速度の増大 →*粒子間の接触剛性が増加するため*

弾性波速度の拘束圧依存性

表面粗度の影響

深度による速度の増大 →*粒子間の接触面積が増加するため*

発表内容

粒状体地盤材料(細砂ー礫材)に対する

1) 弾性波速度の密度・拘束圧依存性

2) 土粒子堆積方向による速度異方性

3) 細粒分混じり材料の周波数応答特性

土粒子堆積方向による速度異方性

Santamarina & Cho, 2004

粒子接触点数

接触力網

発表内容

粒状体地盤材料(細砂ー礫材)に対する

1) 弾性波速度の密度・拘束圧依存性

2) 土粒子堆積方向による剛性異方性

3)細粒分混じり材料の周波数応答特性

細粒分混じり材料

骨材(粗粒材)の挙動+細粒分の挙動? 液状化強度の増大?

細粒分流出による水みち、地中空洞形成

細粒分混じり材料の透水特性

DEM-CFD coupled simulation

Fig. 5. Coupled DEM-CFD simulation. Particles are coloured by drag force. The CFD grid is overlain in black.

細粒分が骨格に寄与している場合は流出しにくい

細粒分混じり材料の周波数応答特性

骨材(粗粒材)の挙動+細粒分の挙動? 液状化強度の増大?

細粒分流出による水みち、地中空洞形成

<u>細粒分が骨格構造に寄与しているか否かが重要</u>

目的:細粒分の骨格構造寄与度を非破壊検査で評価する

細粒分の骨格構造寄与

細粒分の骨格構造寄与

最大通過周波数

弹性波周波数応答(個別要素法数値解析)

粒径が小さい → 高周波成分まで地盤を通過する

最大通過周波数

弹性波周波数応答 (室内試験)

粒径が小さい → 高周波成分まで地盤を通過する

最大通過周波数の変化

細粒分25~35%の範囲で大きく遷移

実験結果との比較

細粒分が応力負担 → 高周波成分が通過するようになる

粒状体地盤材料の弾性波速度は

- ・密度が大きいほど増大する
 → 粒子間の接触点数が増加するため
- ・深度が大きいほど増大する
- → 粒子間の接触剛性(面積)が増加するため
- ・水平方向の伝播速度>深度方向の伝播速度
 → 土粒子の向きとの相関あり(要検討)

<u>細粒分が骨格構造に寄与すると高周波成分が顕著となる</u>