Geotechnical aspect of the damage caused by the April 25th, 2015 Gorkha earthquake of Nepal

Kazuo KONAGAI¹, Rama Mohan POKHREL², Hitoshi MATSUBARA³ and Masataka SHIGA⁴

¹Fellow of JSCE, Professor, Graduate School of Urban Innovation, Yokohama National University
(Tokiwadai 79-1, Hodogaya-ku, Yokohama 240-8501, Japan)
E-mail: konagai@ynu.ac.jp

²Member of JSCE, JSPS Research Fellow, Institute of Industrial Science, University of Tokyo
(Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan)
E-mail: pokhrel@iis.u-tokyo.ac.jp

³Member of JSCE, Associate Professor, Faculty of Engineering, University of the Ryukyu
(Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan)
E-mail: matsbara@tec.u-ryukyu.ac.jp

⁴Undergraduate student, Department of Civil Engineering, Yokohama National University
(Tokiwadai 79-1, Hodogaya-ku, Yokohama 240-8501, Japan)
E-mail: shiga-masataka-it@ynu.jp

Key Facts
- Hazard Type: Earthquake
- Date of the disaster: April 25th, 2015
- Location of the survey (Lat. Lon., name or address): Kathumandu, SunKoshi, Melamchi, Dhunche
- Date of the field survey (if any): May 27th to June 2nd, 2015
- Survey tools (if any): Laser ranger, GPS receiver
- Key findings: Creeping mountain slopes, local soil subsidence, peak discharges in monsoon rains

Key Words: Gorkha Earthquake, geotechnical problems, Monsoon rains

1. INTRODUCTION

The April 2015 Nepal earthquake of Mw=7.8 (USGS), also known as the Gorkha earthquake, was the worst natural disaster to strike Nepal since the 1934 Nepal–Bihar earthquake. As of May 26th, the police report had confirmed 8,664 fatalities, with more than 21,954 injured (Source: Japan Embassy in Nepal). The quake was followed by many aftershocks including the one of M=7.3 that struck north-eastern Nepal on Tuesday, May 12th. Among the areas of most concern are those where soil/rock masses detached from slopes have fallen into rivers, posing an ongoing menace that will be likely to increase when seasonal monsoon rains begin to fall in June. This report outlines the findings obtained through the reconnaissance of the JSCE Landslide survey group, JSCE/ Japanese Geotechnical Society (JGS)/ Japan Association for Earthquake Engineering (JAEE) Joint Investigation Team for the 2015 Nepal Earthquake Disaster.

2. LANDSLIDES AND MONSOON RAINS

The earthquake bears comparison with the 1923 Great Kanto earthquake, Japan, in terms of its moment magnitude of 7.9, though there have been various opinions on its magnitude ranging from 7.9 to 8.3¹. As it was one of serious post-earthquake problems in the 1923 Great kanto earthquake, so landslides and debris flows will certainly be a serious impact to not only millions of people, who lost their mountain homes, huddling in the monsoon rains, but also civil-infrastructures along rivers such as intake facilities of hydro-power stations, bridges, etc.

“Landslides triggered by the 25 April Nepal earthquake were mapped by experts at the British Geological Survey, Durham University, and a volunteer group coordinated by Jet Propulsion Laboratory (JPL) - NASA, the University of Arizona, and International Center for Integrated Mountain Development (ICIMOD), and are provided in the ArcGIS geodatabase format on webpages in references 2), 3) and 4).
Satellite data used to prepare this data set include those from the International Charter Space and Major Disasters, as well as freely-available online viewers. Maps for the authors’ survey were prepared given this set of digital data (Fig. 1). Note that the dataset was last updated on May 8th, 4 days before the largest Mw=7.3 aftershock of May 12.

(1) Estimation of peak discharge in monsoon
Since one of the major post-quake concerns is the increase in discharge of river water in the upcoming rainy season, a rough and ready estimation of peak discharges was made at 2 points along the Sunkoshi River (Table 1), where a large landslide mass is clogging its stream as will be discussed in the following section.

River water depth \(h \) is first estimated by observing hydraulic disturbances transmitted downstream within a steady cone of apex angle \(\theta \) (Fig. 2)

\[
v_{\text{jump}} = \sqrt{gh} = v_{\text{flow}} \sin \theta
\]

where, \(g \) = gravitational acceleration, and \(v_{\text{flow}} \) = observed flow velocity. Manning’s empirical equation\(^5\) is then used to calculate Manning coefficient of roughness \(n \) at the chosen points:

\[
v_{\text{ave}} = \frac{1}{n} R^{2/3} i^{1/2}
\]

where \(v_{\text{ave}} \) = cross-sectional average velocity (m/s) which is tentatively assumed to be \(2/3 \) of the observed peak flow velocity \(v_{\text{flow}} \). \(R \) = hydraulic radius (m) and \(i \) = slope of the hydraulic grade line. Though it may be a mere coincidence that the estimated roughness coefficient values \(n \) are about the same with each other, these values lie in ranges recommended by the Japan Ministry of Land, Infrastructure, Transport and Tourism (MLIT) for mountain river beds covered up with gravel (0.030 < \(n \) < 0.050) and big boulders (0.040 < \(n \)). Therefore the average value of \(n = 0.045 \) is used to estimate both current and peak discharges. To estimate peak discharges, the peak water depths are estimated based on eyewitness accounts (Table 3).
Peak average velocities of 7.7 to 5.6 m/s associated with the estimated peak discharges of 500 to 700 m³/s may occur in the rainy season, which velocities can be substantially large for the river-bed load including large boulders to be eroded as can be predicted by the Hjulström curve shown in Appendix A.

(2) Sunkoshi landslide mass

Heavy rainfall on August 2, 2014 triggered a landslide on a steep valley wall of metamorphic rock of Sunkoshi river (Fig. 3). The landslide mass reportedly killed 156 people and blocked the river to form a lake behind it. Though the landslide was not caused by the earthquake, the presence of the landslide mass that has fallen in the river will certainly have an important and serious effect on the riverbed load transport and thus important facilities such as intake gates for hydropower stations. It is reported by the Earth Observatory, NASA that some 5.5 million cubic meters of rock and debris tumbled down into the Sunkoshi River valley. A 3D image of the exposed slip surface was made to see more details of detached and deposited rock and debris using Epipolar geometry, which geometry allows a 3D image from photos taken from different locations to be reconstructed. Though three photos were taken from three different Points 1, 2 and 3 (Table 4), Points 2 and 3 are a little too close to each other. Therefore one more reference point (Point 4) was taken, for better control of positioning, at an exposed rock on the intact mountain slope, which can be seen from all the camera locations. The longitude, latitude and elevation of this point were tentatively obtained from a Landsat imagery and the 30m SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model).

The obtained digital elevation model for the exposed slip surface of Sunkoshi is shown in Fig. 4. Though the entire stretch of the exposed surface was not completely covered, there are a clear hollow of the top source region, major triple-terraced cliffs on the top, halfway up and near the toe of the exposed surface with conic talus deposits (collections of broken rock fragments) rimming along the bases of these cliffs. The angle of repose for these talus deposits varies from 15 degrees for low-lying coarse rock deposits to 30 degrees for high-lying finer granular deposits.

The 30m SRTM DEM was used herein as the terrain model before the landslide event, and compared with the obtained digital elevation model of the exposed slip surface. Fig. 5 shows the change in elevation within the measured slip surface area.

The volumes of the detached and deposited masses are estimated to be 11.6 million m³ and 3.9 million m³ respectively. The observed area is not covering the major part of the soil mass that has fallen into the river, and the remaining mass of 7.7 million m³ may

Table 2: Manning’s roughness coefficients \(n \) estimated at two points along Sun Koshi river

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Effective river water width (m)</th>
<th>Water cross-section ((m^2))</th>
<th>Current discharge</th>
<th>Credible increase of river water level (m)</th>
<th>Increase in river width (m)</th>
<th>Credible% peak velocity</th>
<th>Credible% peak discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>6.887755102</td>
<td>13.7755102</td>
<td>2</td>
<td>73.7959183</td>
<td>7.685783</td>
<td>567.17942</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>10.60888126</td>
<td>20.5105036</td>
<td>2</td>
<td>120.2488715</td>
<td>5.622115</td>
<td>676.05298</td>
</tr>
</tbody>
</table>

Table 3: Estimated current (May 28, 2015) and peak discharges (m³/s)

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Velocity of wave propagation across flow (deg)</th>
<th>Velocity of hydraulic jump (m/s)</th>
<th>Estimated maximum depth (m)</th>
<th>River bed drop (m)</th>
<th>River bed inclination</th>
<th>Average flow velocity (m/s)</th>
<th>Estimated Sauter–Manning coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>45.121132036</td>
<td>0.459184</td>
<td>5</td>
<td>128.6</td>
<td>0.388802</td>
<td>0.30812243</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>75.27210888</td>
<td>0.757777</td>
<td>4.6</td>
<td>232.4</td>
<td>0.019735</td>
<td>0.50518482</td>
</tr>
</tbody>
</table>

Fig. 3: Sunkoshi Landslide

(Photograph by K. Konagai taken at N27.761312, E85.875274, on May 28th, 2015)
be as much as the rock/debris volume of 5.5 million m³ estimated by NASA⁶. However, the estimated volumes are sensitive to points taken for geo-referencing (Table 4). Revised values will be reported in future publications.

Table 4: Reference points for reconstructing 3D image

<table>
<thead>
<tr>
<th>Point No.</th>
<th>Longitude (degree)</th>
<th>Latitude (degree)</th>
<th>UTM value easting, x (m)</th>
<th>UTM value northing, y (m)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.869678</td>
<td>27.755511</td>
<td>388609.86</td>
<td>3070631.27</td>
<td>896.535034</td>
</tr>
<tr>
<td>2</td>
<td>85.876536</td>
<td>27.76144</td>
<td>389291.83</td>
<td>3071281.94</td>
<td>893.824341</td>
</tr>
<tr>
<td>3*</td>
<td>85.875274</td>
<td>27.761312</td>
<td>389167.33</td>
<td>3071268.88</td>
<td>864.986816</td>
</tr>
<tr>
<td>4</td>
<td>85.869813</td>
<td>27.772017</td>
<td>388640</td>
<td>3072460</td>
<td>1380</td>
</tr>
</tbody>
</table>

* Coordinates of Point 3 were not used for geo-referencing.

(3) Creeping landslide mass

According to eyewitness accounts, an about 1.5 km long soil mass was first detached in the heavy rain season of 2002 from the zone of about 2100m ASL on a high mountain slope, and fell along a deeply incised gulley down to Trishuli river about 1300m below the exposed scar to clog the stream. A temporary road was quickly constructed across this zone for the important traffic of Trishuli road leading to Dhunche not to be suspended long.

However, the road started moving inch by inch towards the toe. Fig. 6 shows two satellite images of the zone from different times, the upper and lower ones from May 3, 2015 and January 4, 2010, respectively. It is noted in the latest 2015 photo that the temporary road section crossing the landslide zone is currently west of the location where this section used to be in 2010, indicating that this section

![Fig. 4 DEM of slip surface of Sunkoshi Landslide](image)

![Fig. 5 Change in elevation within exposed slip surface](image)
has been carried down the slope over about 30m horizontal distance. Moreover swaths of bare slip surfaces above the temporary road, which swaths were not visible in the 2010 photo, are appearing and becoming thicker year by year. Though the earthquake had reportedly invisible and indirect effect upon the remaining landslide mass, the movement of the mass can be further accelerated in the upcoming rainy season of 2015.

All along the Trishuli road from this point of continuous creeping to Dhunche, clear indications of dilating landslide masses can be seen from place to place. Fig. 7 shows a pair of photographs of a dilating debris mass, which was cut at this elevation for the temporary road construction. These photos, arranged side by side can be perceived as a single image in terms of depth, and one notices that the matrix of fine sand filling up the voids of sub-angular rocks/boulders exhibits fresh open cracks, an indication that the fabric of these embedded large rocks are slowly dilating.

Fig. 6 Landslide zone (Satellite images taken from Google Earth)
3. KATHMANDU CITY

(1) Clusters of damaged houses/buildings
One interesting preliminary observation was the unusual nature of the earthquake motion recorded at the Kanti Path strong-motion station, Kathmandu, of the National Strong Motion Project (NSMP), United States Geological Survey (USGS)\(^{10}\), which record exhibited a long predominant period of around 5 s (Fig. 8). Though the peak ground accelerations in the east-west and north-south directions were about 0.16G at most, this fact indicated that the ground motion at this station was very slow with overall ground displacements of over a meter, as opposed to the quick series of jolts that we often observe in ordinary earthquakes. This may be attributed to the fact that the city in the Kathmandu basin spreads over an about 550 m thick deposit of Paleo Kathmandu Lake, which deposit is considered to be of Pliocene to Pleistocene in age\(^{11}\).

However, this motion may not necessarily represent the motions particularly in areas most seriously hit by this earthquake. The GDACS (Global Disaster Alert and Coordination System) LIVE map\(^5\), which integrates geo-spatial data from a range of sources in support to response efforts following the Gorkha earthquake, shows that seriously damaged houses and buildings were clustered very locally along rims of terraces and valleys of streams that cut the terraces down to a little lower elevations. When these damaged houses and buildings are mapped upon the PALSAR II interferogram\(^{12}\), it is noted that the biggest cluster of damaged houses/buildings can be found where the east-west trending parallel firinge pattern shows some clear disturbance (Area 1 in Fig. 9). This disturbance can be considered to be a local deformation of the ground. There is not necessarily a clear casual relationship confirmed between the local ground deformation and the cluster of damaged

Fig. 7 Sign of dilating debris mass halfway up on a landslide mass, which was cut at this elevation for the temporary road construction at N28.067959°, E85.228808° (Photo by K. Konagai)

Fig. 8 Three orthogonal components of acceleration time history observed at USGS-NSMP strong groundmotion station in Kathmandu at N27.7120°, E85.3160° \(^{10}\)
houses/buildings. However, the ground motion here may have been intense enough to cause both the ground deformation and the damage to houses/buildings though the sequence of these two are not clear yet.

(2) Depressed section of Araniko Highway

One more disturbance of the fringe pattern of PALSAR 2 interferogram (Area 2 in Fig. 9) can be found about 2 km southeast of the Kathmandu International Airport. One segment of the Kathmandu-Bhaktapur Road section of the Araniko Highway goes across this area. Several lines of vertical ground dislocations appeared diagonally across this road making up a 200m wide swath of ground failure. Way points were marked along visible dislocation lines by a GPS receiver as shown in Fig. 10. The observed ground dislocation lines are about parallel to each other trending in NEE to SWW direction and curving slightly north. These lines die out beyond their eastern and western ends, and about 300 to 400 m long at the most, indicating that the failure was just localized within this short extent of the swath. Two outermost lines of relatively large dislocation indicates that the area between these two major dislocation lines has sunken by about 2m.

However the midmost lines suggest that the lowest wet zone may have been pushed slightly up. To highlight this feature of mass movement, a longitudinal section of the highway was measured by using a handy laser-ranger (Fig. 10).

Though the cause of this ground depression is yet controversial, a local lateral spread of hill slopes towards the low-lying wet ground is considered to have been responsible for this failure. The wet and slightly depressed area along a small creek may have been liquefied and/or weakened enough to allow the hillsides on both sides of the creek to move a little sideways against each other, and bulged. This ground depression was responsible for the deformation of a two-span continuous pedestrian overpass, whose north pier rests exactly on the south-easternmost line of dislocation while the other two are on the relatively intact hill terrace. As the result, the northern pier was on an outward tilt, causing the joint between the pier and the deck to open up by about 40 to 45 cm. It was lucky that the deck of the overpass did not fall onto the highway probably because it was a two-span continuous beam. However there could have been a good chance for any single supported deck of overpass to fall upon the highway with its spans expanded. According to one of our members who have been there on May 2nd, the joint may have been opened a little wider (Fig. 11), indicating that the tilt of the pier has been increasing gradually and/or in a step-wise manner over a month’s period since the earthquake hit.

Given the above findings, local soil conditions are
to be carefully reflected upon rehabilitation plans in a rational manner, because as has been frequently seen in the past earthquakes, it can take months for liquefied/weakened soil to regain its initial strength, and even after it regains the strength, the soil can remain susceptible to re-liquefaction in a next big earthquake. To pinpointing locations of weak soils, InSAR imageries may be useful as shown in Fig. 9.

4. RECOMMENDATIONS

It has been reported that the population of Kathmandu grows by 6.5 percent each year\(^1\), and much of the city’s existing housing stock was constructed before building codes were first drafted in 1993 to 1994 and approved in 2003\(^2\). However the findings through this survey indicated that local geological/ geotechnical conditions may have been also responsible for serious destructions, which were clustered densely in some particular areas. Unstable mountain slopes that exhibit some creeping movements and landslide masses that have fallen into rivers pose an ongoing menace that is likely to increase in the monsoon rains. In this kind of situation, and given the pledge in the donner conference of June 25 that 4.4 billions of dollars will
be given to help rebuild this earthquake-ravaged nation15, no delay is allowed in mapping out rational tactics for better rehabilitations. Here follow the recommendations based upon what the authors found through their reconnaissance:

(1) Continuous monitoring of creeping slopes from satellites is important. Once early signs of accelerated movements are found, pin-point countermeasures can be taken in a quick and rational manner.

(2) Peak discharge and associated riverbed load transportation rate are to be estimated based upon much more reliable information. This estimation is particularly important to deal with potential risks for intake facilities of hydropower stations, etc.

(3) Volumes and dimensions of large landslide masses clogging major streams are also to be estimated.

(4) Something that should not be forgotten in discussing rehabilitation strategies is that a large earthquake often causes long lasting geotechnical problems. Once liquefied and/or weakened, soil can remain soft for months. Locations with similar land deformations to the depressed section of Araniko Highway are to be identified and their causes are to be thoroughly studied to reflect the natures of weak soils upon rehabilitation/ reconstruction plans.

\textbf{ACKNOWLEDGMENT:} Special thanks of the authors go to Mr. Masashi Ogawa, Ambassador, Mr. Shinya Machida, Counsellor, and Mr. Makoto Oyama, First Secretary at the Embassy of Japan, Kathmandu, Nepal, who have provided the authors with briefing of the earthquake-induced damage, and organized an information exchange meeting among Japanese reconnaissance teams.

\textbf{APPENDIX A HJULSTRÖM CURVE}

The Hjulström diagram6) (Fig. A1) has been widely used to determine whether a river would erode, transport, or deposit riverbed sediment probably because it is very easy to use. The upper and lower curves in Hjulström diagram show the critical flow velocity for riverbed erosion and the deposition velocity, respectively, as a function of particle size. Later, Sundborg16) modified Hjulström diagram to show separate curves of the critical flow velocities for several water depths. In any versions of this diagram, flow velocities reaching 6 to 7 m/s is substantially large for the river-bed load including large boulders to be eroded.

\textbf{REFERENCES}

3) Durham / BGS Team, Nepal: UPDATED (28 May) landslide inventory following 25 April Nepal earthquake, etc., http://euf.nerc.ac.uk/blog/
10) Center for Engineering Strong Motion Data (CESMD), Cooperative effort of USGS, CGS and ANSS, http://strongmotioncenter.org/

14) EERI Nepal Earthquake Clearing House, Nepal National Building Code (NBC): An Overview,
http://www.eqclearinghouse.org/2015-04-25-nepal/2015/05/05/nepal-national-building-code-nbc-an-overview/

15) Thalif Deen (United Nations): Donors Pledge Over 4.4 Billion Dollars to Nepal - But With a Caveat,
http://www.globalissues.org/news/2015/06/26/21171

16) Sundborg, A.: The River Klarälven: Chapter 2. The morphological activity of flowing water—erosion of the stream bed:

17) University of Bristol, Questionmark Perception, June 30, 2015,
https://qmp.bris.ac.uk/perception5/open.php?SESSION=9126309306926432&NAME=Tutor&GROUP=ESU

(Received July 1st, 2015)