Module 1
Introduction to CM/GC
Construction Manager/General Contractor
1.3: Delivery Method Overview

CM/GC Collaboration
Construction Manager/General Contractor

State of the Practice
1.2: State of the Practice

States with Legislative Authority to use CM/GC

[Map showing states with enabling legislation for CM/GC]
1.2: State of the Practice
States with CM/GC Experience

[Map showing states with CM/GC Experience]
1.2: State of the Practice

Why DOTs use CM/GC?

• Inherent project risk
• Opportunities for innovation
• Need for specialized qualifications
• Benefits from early procurement
• Limited or fixed budget
1.2: State of the Practice

Owner Benefits

• Opportunities for innovation
• Risk reduction & allocation
• Improved cost control
• Improved design quality
• Schedule optimization
• Collaboration
Construction Manager/General Contractor

Delivery Method Overview
1.3: Delivery Method Overview

What is CM/GC?

Contract with Designer

Two-Phase Contract with Contractor:

• **Phase I**: Construction Management

• **Phase II**: General Contracting
1.3: Delivery Method Overview

What is CM/GC? - Two-Phase Contracting

PRE-CONSTRUCTION
Construction Manager

Preconstruction Services
- Develop cost model
- Constructability Review
- Early Schedule Development
- Early Material Procurement
- Construction Planning
- ROW Acquisition
- Solve Third Party Issues

CONSTRUCTION
General Contractor

Construction Services

Price Agreement: TMP or GMP
1.3: Delivery Method Overview

What is CM/GC? - Two-Phase Contracting

- PRE-CONSTRUCTION
 - Construction Manager
 - Engineering Services
 - Early Work Contract 1

- CONSTRUCTION
 - General Contractor
 - Price Agreement: TMP or GMP
 - Construction Contract 2
1.3: Delivery Method Overview

Project Team Selection

• **Program Manager & Designer:**
 Qualifications Based Selection

• **Construction Manager:**
 1. Qualifications Based Selection
 2. Best Value Selection
 ▪ Technical score
 ▪ Price
1.3: Delivery Method Overview

Independent Cost Estimator (ICE)

Qualification of ICE

- Contractor experienced in developing cost based estimates
- No conflict of interest
- Qualifications based selection

Role of ICE

- Participate during the design
- Provide project costs
- Assist the DOT in negotiations
- Validate fair price
1.3: Delivery Method Overview

Phase 1: Design
Once we have selected CM/GC and Designer:

1. Provide constructability feedback
2. Identity and mitigate risks
3. Develop a cost model
 * Periodically submit Opinions of Probable Construction Cost (OPCC)
4. Bid on project
1.3: Delivery Method Overview

CM/GC “Bid” Process

Owner asks CM/GC to submit final Construction Cost:

Two estimates:
1. Designer-furnished Engineers Estimate
2. Independent Cost Estimate (ICE)

Two Possible Outcomes:
1. Owner gets fair price – Proceed with build
2. Owner doesn’t get fair price
Construction Manager/General Contractor

Delivery Method Comparison
1.4: Delivery Method Comparisons

<table>
<thead>
<tr>
<th>Project Traits</th>
<th>Design-Bid Build</th>
<th>CM/GC</th>
<th>Design Build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Management</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Innovation</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Constructability</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Owner Control</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Competitive Pricing</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Price Certainty</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Schedule Optimization</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
1.4: Delivery Method Comparisons

Risk Assessment

- DBB
- DB
- CM/GC

Risk

Contractor Risk

Owner Risk
Conclusion

Construction Manager/General Contractor
Keys to Success:

1. Have a **solid business case** for implementing a CM/GC program.

2. Contractor selection process must be **transparent to local industry**.

3. Public owner and contractor industry must have a **mature partnering environment**.

4. **Dedicated** staff and **a champion** dedicated to CM/GC deployment.

5. Pilot CM/GC **deployment on smaller less complex projects**.
Thank You!
Cost & Benefits Associated with CM/GC

John Haynes, FHWA Research and Innovation Program Manager
Objectives

• Describe the State-of-Practice
• Provide an Empirical Analysis of Performance
• Give an Agency Perspective on the Results
Federal Highway Research Study

Two-Year Investigation into ACM Performance

University of Colorado Boulder

The University of Kansas

EDC
Research Study

Document Benefits, Costs and Risks Associated with Alternative Contracting Methods

Disseminate Lessons Learned

• Conferences
• FHWA TechBriefs
• Webinars
Data Collection Approach

Brief history of DB and CM/GC in Federal highways

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>FDOT Introduces D-B Program</td>
</tr>
<tr>
<td>1990</td>
<td>FHWA Allows D-B under SEP-14</td>
</tr>
<tr>
<td>2002</td>
<td>FHWA Issues Final DB Rule</td>
</tr>
<tr>
<td>2011</td>
<td>FHWA Every Day Counts CM/GC</td>
</tr>
<tr>
<td>2012</td>
<td>MAP 21 Authorizes CM/GC</td>
</tr>
</tbody>
</table>
Data Collection Approach

 Goals

• Collect the largest highway project delivery database
• Collect diverse sample of completed projects

- Geographic
- Project type
- Project size
- Project complexity

✓ Seek statistically significant results
Data Collection Approach

Two-step data collection approach

1. Contract cost and time from contracting databases
2. Additional project characteristics from project managers

Follow-up calls for data validation
Data Collection Overview - DBB

[Map showing states with numbers indicating data collection projects]
Data Collection Overview – D-B
Data Collection Overview – CM/GC

States That Contributed CM/GC Projects

Federal Lands Highway

CFL

1

2

1

3

13

5

7

2

3

10
Data Collection Overview

Research Data Collection

- 291 projects
 - 134 D-B-B projects
 - 34 CM/GC projects
 - 39 D-B/LB projects
 - 84 D-B/BV projects

- 28 agencies
 - Completed 2004-2015
Data Population Characteristics

- Project Delivery Methods
- Procurement Methods
- Payment Methods
- Average Project Cost and Duration
Project Delivery Methods

- D-B/LB = 39 (13%)
- D-B/BV = 84 (29%)
- D-B-B = 134 (46%)
- CM/GC = 34 (12%)
Project Procurement Procedures

<table>
<thead>
<tr>
<th>Procurement Procedure</th>
<th>D-B-B (n=134)</th>
<th>CM/GC (n=34)</th>
<th>D-B/LB (n=39)</th>
<th>D-B/BV (n=84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Bid</td>
<td>80%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Best Value</td>
<td>14%</td>
<td>47%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Qualification-Based</td>
<td>1%</td>
<td>41%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total of each column may not sum to 100% because of unclassified procurement procedures by respondents.
Contract Payment Methods

<table>
<thead>
<tr>
<th>Payment Method</th>
<th>D-B-B (n = 134)</th>
<th>CM/GC (n = 34)</th>
<th>D-B/LB (n = 39)</th>
<th>D-B/BV (n = 77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lump sum</td>
<td>2%</td>
<td>3%</td>
<td>85%</td>
<td>91%</td>
</tr>
<tr>
<td>Unit price</td>
<td>93%</td>
<td>38%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>GMP</td>
<td>0%</td>
<td>56%</td>
<td>0%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Total of each column may not sum to 100% because of unclassified payment procedures by respondents.
Average Project Award Cost

<table>
<thead>
<tr>
<th>Contracting Method</th>
<th>Mean Cost ($k)</th>
<th>Median Cost ($k)</th>
<th>Max Cost ($k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=134)</td>
<td>20,287</td>
<td>12,438</td>
<td>252,052</td>
</tr>
<tr>
<td>CM/GC (n=34)</td>
<td>36,328</td>
<td>19,167</td>
<td>235,936</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>10,646</td>
<td>4,384</td>
<td>68,826</td>
</tr>
<tr>
<td>D-B/BV (n=77)</td>
<td>43,364</td>
<td>22,128</td>
<td>357,760</td>
</tr>
<tr>
<td>All Projects</td>
<td>26,908</td>
<td>13,920</td>
<td>357,760</td>
</tr>
</tbody>
</table>

Average Project Award Cost
Average Project Duration

<table>
<thead>
<tr>
<th>Contracting Method</th>
<th>Mean Award Cost ($k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=134)</td>
<td>20,287</td>
</tr>
<tr>
<td>CM/GC (n=34)</td>
<td>36,328</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>10,646</td>
</tr>
<tr>
<td>D-B/BV (n=77)</td>
<td>43,364</td>
</tr>
</tbody>
</table>

Average Award Cost (repeated)
Summary of Major Results

Alternative Contracting Methods

• Apply to a variety of project sizes and complexities
• Greatly expedite timing of award
• Significantly increase project intensity
• Have no significant impact on cost growth
Average Project Award Cost

<table>
<thead>
<tr>
<th>Contracting Method</th>
<th>Mean Cost ($k)</th>
<th>Median Cost ($k)</th>
<th>Max Cost ($k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=134)</td>
<td>20,287</td>
<td>12,438</td>
<td>252,052</td>
</tr>
<tr>
<td>CM/GC (n=34)</td>
<td>36,328</td>
<td>19,167</td>
<td>235,936</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>10,646</td>
<td>4,384</td>
<td>68,826</td>
</tr>
<tr>
<td>D-B/BV (n=77)</td>
<td>43,364</td>
<td>22,128</td>
<td>357,760</td>
</tr>
<tr>
<td>All Projects (n=284)</td>
<td>26,908</td>
<td>13,920</td>
<td>357,760</td>
</tr>
</tbody>
</table>
Applications for Small Projects

<table>
<thead>
<tr>
<th>Project Delivery Type</th>
<th>Mean Cost ($k)</th>
<th>< $20M</th>
<th>< $10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=134)</td>
<td>20,287</td>
<td>63%</td>
<td>39%</td>
</tr>
<tr>
<td>CM/GC (n=34)</td>
<td>36,328</td>
<td>47%</td>
<td>29%</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>10,646</td>
<td>82%</td>
<td>70%</td>
</tr>
<tr>
<td>D-B/BV (n=77)</td>
<td>43,364</td>
<td>38%</td>
<td>27%</td>
</tr>
<tr>
<td>Total</td>
<td>26,908</td>
<td>59%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Applications for Small Projects

<table>
<thead>
<tr>
<th>Project Delivery Type</th>
<th>Mean Cost ($k)</th>
<th>< $20M</th>
<th>< $10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=134)</td>
<td>20,287</td>
<td>63%</td>
<td>39%</td>
</tr>
<tr>
<td>CM/GC (n=34)</td>
<td>36,328</td>
<td>47%</td>
<td>29%</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>10,646</td>
<td>82%</td>
<td>70%</td>
</tr>
<tr>
<td>D-B/BV (n=77)</td>
<td>43,364</td>
<td>38%</td>
<td>27%</td>
</tr>
<tr>
<td>Total</td>
<td>26,908</td>
<td>59%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Project Complexity

Most Complex (major) = 140 (48%)

Moderately Complex = 107 (37%)

Non-Complex = 42 (15%)
D-B-B Project Complexity

D-B-B = 134 (46%)

Non Complex 46%

Moderately Complex 39%

Most Complex 15%

Non Complex 46%
CM/GC Project Complexity

CM/GC = 34
12%

Non Complex 3%
Moderately Complex 32%
Most Complex 65%
D-B Project Complexity

D-B/LB = 39 (13%)

D-B/BV = 84 (29%)

D-B/LB
- Most Complex: 23%
- Moderately Complex: 35%
- Non Complex: 38%

D-B/BV
- Most Complex: 58%
- Moderately Complex: 35%
- Non Complex: 7%
D-B-B Timing of Award

- STIP
- Scoping
- Preliminary Design
- Final Design
- Ad
- Award
- Construction
CM/GC Timing of Award

Cost Certainty

STIP
Preconstruction Contract
Awards
Construction Package
Preliminary Design
Final Design Package 1
Final Design Package 2
Construction Package 2
Awards
Construction Package 1
Design-Build/Best Value (D-B/BV)

- STIP
- Scoping
- Preliminary Design
- RFQ
- RFP
- Award
- Construction
- Final Design
- Cost Certainty
D-B/ LB Timing of Award

Cost Certainty

STIP Scoping RFP Award Final Design Construction

Preliminary Design

Ad
Timing of Award

- D-B-B
- CM/GC
- D-B/BV
- D-B/LB

Cost Certainty
Project Intensity ($/Day)

D-B-B

CM/GC

D-B/BV

D-B/LB

EDC
Project Intensity ($/Day)

<table>
<thead>
<tr>
<th>Contract Method</th>
<th>Mean ($/day)</th>
<th>Median ($/day)</th>
<th>Max. ($/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=82)</td>
<td>13,857</td>
<td>7,244</td>
<td>64,971</td>
</tr>
<tr>
<td>CM/GC (n=28)</td>
<td>36,826</td>
<td>23,152</td>
<td>159,030</td>
</tr>
<tr>
<td>D-B/LB (n=26)</td>
<td>10,382</td>
<td>5,731</td>
<td>39,943</td>
</tr>
<tr>
<td>D-B/BV (n=61)</td>
<td>29,283</td>
<td>27,611</td>
<td>76,811</td>
</tr>
</tbody>
</table>
Cost Metrics

Award Growth
 • Engineer’s Estimate to Contract Amount

Construction Cost Growth
 • Award to Final

Change Orders by Type
Cost Metrics

Award Growth (Engineer’s Estimate to Award)

<table>
<thead>
<tr>
<th>Contract Method</th>
<th>Mean</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B ((n=129))</td>
<td>-9%</td>
<td>-51%</td>
<td>42%</td>
</tr>
<tr>
<td>CM/GC ((n=31))</td>
<td>3%</td>
<td>-13%</td>
<td>15%</td>
</tr>
<tr>
<td>D-B/LB ((n=37))</td>
<td>-5%</td>
<td>-58%</td>
<td>104%</td>
</tr>
<tr>
<td>D-B/BV ((n=78))</td>
<td>-7%</td>
<td>-51%</td>
<td>77%</td>
</tr>
</tbody>
</table>
Construction Cost Growth (Award to Final)

<table>
<thead>
<tr>
<th>Contract Method</th>
<th>Mean</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-B-B (n=131)</td>
<td>4.1%</td>
<td>-21.8%</td>
<td>33.1%</td>
</tr>
<tr>
<td>CM/GC (n=31)</td>
<td>0.9%</td>
<td>-12.0%</td>
<td>14.5%</td>
</tr>
<tr>
<td>D-B/LB (n=39)</td>
<td>3.7%</td>
<td>-5.6%</td>
<td>24.9%</td>
</tr>
<tr>
<td>D-B/BV (n=81)</td>
<td>3.8%</td>
<td>-4.5%</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

* Note D-B methods include design and construction cost.
Cost Metrics

Average Impact of Change order Categories (% of Award)

<table>
<thead>
<tr>
<th>Change Orders</th>
<th>D-B-B (n = 65)</th>
<th>CM/GC (n = 19)</th>
<th>D-B/LB (n = 21)</th>
<th>D-B/BV (n = 57)</th>
<th>All Projects (n = 162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Directed</td>
<td>1.2%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plan Errors and Omissions</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Plan Quantity Changes</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unforeseen Conditions</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total Cost Growth</td>
<td>5.8%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.7%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Average Impact of Change order Categories (% of Award)

<table>
<thead>
<tr>
<th>Change Orders</th>
<th>D-B-B (n = 65)</th>
<th>CM/GC (n = 19)</th>
<th>D-B/LB (n = 21)</th>
<th>D-B/BV (n = 57)</th>
<th>All Projects (n = 162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Directed</td>
<td>1.2%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plan Errors and Omissions</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Plan Quantity Changes</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unforeseen Conditions</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total Cost Growth</td>
<td>5.8%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.7%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Average Impact of Change order Categories (% of Award)

<table>
<thead>
<tr>
<th>Change Orders</th>
<th>D-B-B (n = 65)</th>
<th>CM/GC (n = 19)</th>
<th>D-B/LB (n = 21)</th>
<th>D-B/BV (n = 57)</th>
<th>All Projects (n = 162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Directed</td>
<td>1.2%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plan Errors and Omissions</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Plan Quantity Changes</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unforeseen Conditions</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total Cost Growth</td>
<td>5.8%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.7%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Cost Metrics

Average Impact of Change order Categories (% of Award)

<table>
<thead>
<tr>
<th>Change Orders</th>
<th>D-B-B (n = 65)</th>
<th>CM/GC (n = 19)</th>
<th>D-B/LB (n = 21)</th>
<th>D-B/BV (n = 57)</th>
<th>All Projects (n = 162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Directed</td>
<td>1.2%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plan Errors and Omissions</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Plan Quantity Changes</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unforeseen Conditions</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total Cost Growth</td>
<td>5.8%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.7%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Cost Metrics

Average Impact of Change Order Categories (% of Award)

<table>
<thead>
<tr>
<th>Change Orders</th>
<th>D-B-B (n = 65)</th>
<th>CM/GC (n = 19)</th>
<th>D-B/LB (n = 21)</th>
<th>D-B/BV (n = 57)</th>
<th>All Projects (n = 162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Directed</td>
<td>1.2%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Plan Errors and Omissions</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Plan Quantity Changes</td>
<td>1.1%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Unforeseen Conditions</td>
<td>2.4%</td>
<td>1.5%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total Cost Growth</td>
<td>5.8%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.7%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Summary of Major Results

Alternative Contracting Methods

• Apply to a variety of project sizes and complexities
• Greatly expedite timing of award
• Significantly increase project intensity
• Have no statically significant impact on cost growth
Questions?
Value of a CM/GC Program Manager

Mike Baker, PE - David Evans and Associates, Inc.
September 20, 2016
Agenda

- Why a Program Manager (PM)
 - Aligning project needs and the PM role
 - Value added through the PM role
 - Early lessons learned
 - Scalability of Program Manager
Reasons Owners Hire a Program Manager

- Fast/flexible access to skilled experts
- Increased staffing capacity for timely delivery
- Strong owner/project partnership and advocacy
- Efficient service and procurement
- Easy transition after project
- ‘A shield in a storm’
Example- Owner’s Successful History Delivering Bridge Projects

Owner staffed to deliver small to mid-size projects

- Hawthorne Bridge - $21 million
- Broadway Bridge - $26 million
- Sauvie Island Bridge - $54 million
Why a Program Manager

Sellwood Bridge has more...

• Political Oversight
• Public engagement
• Complexity
• Risk
• Intergovernmental coordination
• Funding need
• Scope/cost
• Schedule Risk

Sellwood Bridge (6X larger project)
$325m

Sauvie Is. Bridge
$54 m
Advancing the Project on Many Fronts

Design
- Sellwood Bridge
- Interchange

Early Work Packages
- Detour Bridge
- Landslide Stabilization
- Condos

Construct
- Sellwood Bridge Interchange

![Gantt Chart Diagram]

- **2011**
 - Q1: Design
 - Q2: Construct
 - Q3: Design
 - Q4: Construct

- **2012**
 - Q1: Design
 - Q2: Construct
 - Q3: Design
 - Q4: Design

- **2013**
 - Q1: Design
 - Q2: Construct
 - Q3: Design
 - Q4: Design

- **2014**
 - Q1: Design
 - Q2: Construct
 - Q3: Design
 - Q4: Design

- **2015**
 - Q1: Design
 - Q2: Construct
 - Q3: Design
 - Q4: Design
Program Manager Role- the First 30 days

• Get up to speed on relevant project issues/materials
• Designer and CM/GC selection
• Assignments and meeting leadership
• Meet Political leaders and other public owner staff
• Integrate program manager team with County staff
• Oh, and we need to build a trusting relationship
Establish Credibility and Build Trust Fast

- Listen, understand and translate needs into actions
- Anticipate owner needs
- Augment the owner’s strengths and desired role
- Spend time getting to know each other
- Invite and share feedback
- Support each other while at the woodshed
Supporting Owner During Pre-Construction

<table>
<thead>
<tr>
<th>Activity</th>
<th>Public Owner</th>
<th>Program Mgr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leadership & Strategy</td>
<td>Lead</td>
<td>Co-Lead</td>
</tr>
<tr>
<td>Key Meeting Leadership</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Lead Design reviews</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Project Controls and cost estimating</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Contract development (A&E, CM/GC)</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Right of Way</td>
<td>Lead</td>
<td>Support</td>
</tr>
<tr>
<td>Environmental Permits</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Public Involvement</td>
<td>Lead</td>
<td>Support</td>
</tr>
</tbody>
</table>
Supporting Owner During Construction

<table>
<thead>
<tr>
<th>Activity</th>
<th>Public Owner</th>
<th>Program Mgr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leadership & Strategy</td>
<td>Lead</td>
<td>Co-Lead</td>
</tr>
<tr>
<td>Key Meeting Leadership</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Project Controls and cost estimating</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Environmental Permits</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Public Involvement</td>
<td>Lead</td>
<td>Support</td>
</tr>
<tr>
<td>RFIs, CO’s, submittals</td>
<td>Support</td>
<td>Lead</td>
</tr>
<tr>
<td>Quality assurance and survey</td>
<td>Support</td>
<td>Support</td>
</tr>
<tr>
<td>Field inspection</td>
<td>Lead</td>
<td>Support</td>
</tr>
<tr>
<td>On-going cost validation/negotiation</td>
<td>Support</td>
<td>Lead</td>
</tr>
</tbody>
</table>
Early Value Through PM Role

- Accelerated designer and CM/GC selection
- Helped Manage Inter-Agency Relationships
- Quickly established co-located project office
- Pricing, contract and negotiation support
- Risk assessment and value engineering
- Develop strategy and decision-making process
Examples of Early Value Through PM Role

• Timely response to inspection services required
• Flexible staffing transition
• Hired the ICE quickly as owner requested
Early Owner and PM Success Drivers

• Create a project-first mindset- helped significantly by team co-location
• Amidst the flurry of day-to-day work, take time to look forward 12 months and plan
• Know the key players and their interests-all of them
• Develop and implement a clear communication strategy and know who’s best to deliver key messages
Scalability of a Program Manager

- Bring on as early as possible to inform decision making
- Adaptable to small and mid-sized projects
- Based on client’s needs and staff availability and ability
- Consider a program manager where owner needs to:
 - Enhance perceived credibility for project delivery
 - Expand in-house management capability or capacity
 - Mentor an in-house program/project manager
 - Utilize special expertise/experience
 - Have access to a full-service team to respond to needs
 - Provide political buffer
CM/GC

- Promote collaboration, but the owner decides
- Program manager may recommend
- CM/GC doesn’t direct designer
- Designer doesn’t direct CM/GC
- Program manager works to keep team working well together
Questions
CM/GC Case Studies – ‘Perspectives from the Field’ - John Haynes, FHWA
Construction Manager/
General Contractor

Utah Department
of Transportation
Alternative Contracting in Utah

Began with the UDOT’s first design-build project in preparation for 2002 Winter Olympics in Salt lake City.
Alternative Contracting in Utah

• Interstate 15 Reconstruction project awarded in April 1997 and completed in July 2001

• Cost - $1.63 billion

• Performance specifications encouraged innovation in design and construction.

• Resulted in huge success and ‘political capitol’ gains with public taxpayers and Utah State Legislators.
What is Political Capital?

“Obtaining trust, goodwill, and influence with political decision makers and the public taxpayers.”
Innovations Resulting from UDOT's Alternative Contracting Program

Diverging Diamond Interchanges
Innovations Resulting from UDOT's Alternative Contracting Program

Continuous Flow intersections
Innovations Resulting from UDOT’s Alternative Contracting Program

I-215; 4500 South Bridge Replacement Project

Self Propelled Transport devices (SPMTs) & Accelerated Bridge Construction
*Allowed for CM/GC on all Utah state transportation projects.

Section 1302 - Alternative Methods of Construction Contracting Management.

First CM/GC highway construction project awarded on May 2005.
Construction Manager/
General Contractor

Sample UDOT Projects
CM/GC - Interstate 80 Innovate
Salt Lake City, Utah

- Replacement of 12 bridge structures along I-80 in Salt Lake City, Utah
- Moved into location using Self Propelled Modular Transporters (SPMTs)
- Bridges replaced in days, not months.
CM/GC - Interstate -70 Bridge over Eagle Canyon, Utah

- Complete bridge deck replacement in 40-days.
- Deck removed and replaced in sections.
- 600-ton crane with 335-ft reach stationed on each end of the bridge.
CM/GC – Utah State Route 9
Hurricane, Utah

- Gateway City to Zion National Park.
- Additional lanes added in each direction.
- Third Party Issues related to utilities, driveway access, businesses, and public concerns.
CM/GC - Utah State Route 9
Hurricane, Utah

- Contractor assisted with a 3-D utility map and relocation plan.
- Contractor developed utility phasing plan and construction schedule during design phase.
CM/GC & Intelligent Design & Construction (IDC)

- 3-D Models will be provided as legal construction plan at advertising.
- Paper Plan Sets will eventually be phased out.
- Construction crews will work from 3-D Models during construction.
- At project completion contractors will deliver a 3-D as-built model.

Implementation will have a positive impact on the entire project lifecycle.
CM/GC & Intelligent Design & Construction (IDC)

- Feedback from the contractor during pre-construction helped refine UDOT’s model to interface with the contractor’s model.
- The CM/GC contracting method will continue to be the method to develop design-bid build templates for increasingly complex projects.

A Bentley Navigator for iPad screen shot — Construction crews are field testing hardware and software for viewing 3-D construction plans.
Construction Manager/
General Contractor

California Department of Transportation (Caltrans)
Caltrans CM/GC Authority

• Caltrans sought to modernize its contracting in 2005.
• State Assembly Bill 2498 signed on September 2012
• Authorized up to 6 CM/GC projects
• First project awarded February 2014
Construction Manager/
General Contractor

Sample CalTrans Project
CM/GC - San Francisco-Oakland Bay Bridge Foundation Removal
CM/GC – San Francisco-Oakland Bay Bridge Foundation Removal

- 275-foot tall piers
- 3-foot thick walls
- One-month demolition window
- First time Caltrans had used implosion method
CM/GC - San Francisco-Oakland Bay Bridge Foundation Removal

Benefits of CM/GC

• $15 million innovation savings.
• Contractor assisted in obtaining permits.
• Project completed on time and within budget
Summary:

1. CM/GC program is a good contracting method to deploy new innovations.

2. When successfully applied CM/GC can build political capital. This in turn will open opportunities for future innovation savings and further successes.

3. CM/GC allows for early contractor involvement and resolution of third party issues.

4. CM/GC can be applied to smaller projects with inherent complexities.

5. The preconstruction planning efforts that occur with CM/GC can result in reduced construction costs, schedules, and user impacts.
CM/GC Case Study (Sellwood Bridge)- ‘Perspectives from the Field’

http://www.sellwoodbridge.org/

Mike Baker, PE - David Evans and Associates, Inc.
September 20, 2016
Sellwood Bridge looking north - 3 miles south of downtown Portland
Steep cliffs

Landslide
Issues

- West end slope instability
- Buses/trucks restricted
- General deterioration
- Bridge not designed for earthquakes
- Narrow lanes, no shoulders
- Narrow sidewalk
- No bike facilities/poor access
- Tight turns at west end
Project Summary

• Planning process – 2006-2010
• Right of Way – 2011-2012
• Design – 2011-2012
• Construction – December 2011 to late 2016
 – Early work packages for
 • Detour bridge
 • Landslide mitigation
 • Condominium deconstruction and alteration
• Project Cost at $325-million
When we’re done- 2016

Main spans looking East
When we’re done - 2016
Project Challenges

- In-water work window limitations
- Technical complexity
- Stakeholder influenced design
- Substantial right-of-way acquisition
The Case for CM/GC

- County research suggested CM/GC most benefits the owner for projects that:
 - Are high risk
 - Are technically complex
 - Have unusual site conditions
 - Have schedule constraints
 - Require complex phasing
 - Have budget limitations
 - Expected cost savings from innovation
Early Value from CM/GC Input

• Constructability reviews at design milestones identified plan and specification refinements:
 – Enhanced main span construction due to detour bridge
 – Retaining wall refinements
 – Traffic control staging
 – Bridge Arch erection
 – Innovative perched cofferdam approach
Innovations

1. Move old bridge, use as detour, allow faster construction of new bridge
2. Innovative approach to foundations
3. Innovative removal of old bridge piers

06/18/14
Courtesy of ODOT
Detour Structure

FEATURES

• Reuse existing structure as a detour bridge by moving it to the north

• Construct new bridge in one phase

BENEFITS

• Reduced construction duration up to 9 months, minimizing time of impact to the environment and the community

• Reduced costs and environmental impacts associated with bringing new materials on-site for additional temporary structures

• Fewer temporary work bridges, reduced in-water riparian impacts
Detour Bridge (Shoo-fly) - **Install temporary foundations and work bridges**
Detour Bridge (Shoo-fly) - **Construct temporary approaches**
Detour Bridge (Shoo-fly) - Translate existing bridge approx. 50-feet north
Detour Bridge (Shoo-fly)- **Shift traffic to Shoo-fly and build new bridge in one stage vs. two halves**

Detour Option 1 - Stage 2, East Approach First Stage Construction
Detour Bridge (Shoo-fly)- Remove Shoo-fly, complete east end
Construction Comparison-
Sellwood Bridge

Staged Construction built in two halves- 4 Arch Ribs

Slide old bridge for detour use, new bridge built in one phase - 2 Arch Ribs
Moving a Bridge

Before Move

7 Million Pounds
1,100 feet long
Moved 66’ on west
Moved 33’ on east

During Move

After Move

Video

Video
Detour Bridge Benefits

- **Time:** Reduce construction duration up to 9 months
- **Money:** Reduce cost (up to $10 million) in materials, labor, and equipment
- **Safety:** Separation improves safety for workers and travelling public.
- **Design:**
 - Eliminates redundant features
 - Improves appearance (two arch ribs instead of four)
- **Environmental Impacts:**
 - Fewer temporary work bridges
 - Less construction time
 - Reduces in-water and riparian impacts
Perched Box Caissons

FEATURES
- Constructed above river and lowered - no in-water work window limitations
- Concurrent vs. sequential construction

BENEFITS
- Cost, Schedule, Innovation (saved ~ $8M)
- Reduced aquatic habitat impacts from 0.25 acres to 0.03 acres
- Avoided need to drive cofferdam sheet piles into riverbed
- Avoided deep excavation into riverbed to form and pour concrete cofferdam seals and footings
Built above the river
Ready to Lower
Lowered- ready to de-water
De-watered, ready to cut shaft casings
Pier Removal

FEATURES
Original plan to demolish all 5 river piers in large cofferdams

Actual Method:
- Isolated 2 piers on the bank from the river using sandbags
- Removed 3 piers in the river using a diamond wire saw

BENEFITS
- No large cofferdam construction and impact to river bottom
- Avoided impacts to fish
- Removed concrete in large sections
Cost Benefits from CM/GC

• Examples of innovation collaboration (saved $25M)
 ✓ Slide and use old bridge for detour- saved up to $10M
 ✓ Perched box caissons for foundations- saved up to $8M
 ✓ Validated steel vs. concrete deck arch- saved up to $4M
 ✓ Retaining wall optimization- saved up to $500K

• Collaborative cost avoidance- CM/GC proposed alternative traffic staging idea to avoid $5M in cost

• Project overhead costs approximately $1M/month so every day counts
Other Realized CM/GC Benefits

• CM/GC regard for neighborhood context built goodwill

• Advanced schedule-critical early work packages- gained an additional winter in-water work window

• Early procurement of key materials locked in schedule and reduced pricing escalation

• CM/GC process has allowed us to accelerate permits vs. waiting for 100% design
CM/GC Lessons Learned

- Co-location, partnering and teambuilding are key
- Requires a strong owner and collaborative team
- Requires the ‘right’ contractor, designer and owner staff
- Balance of self-perform and sub work matters
- Risk Management is crucial
- Contractor involvement in solving problems is key
- Challenge to get early/meaningful design review input
Questions