断層問題に対するHPCの応用

HPC: High Performance Computing

堀宗朗 東京大学地震研究所 理化学研究所計算科学研究機構

HIGH PERFOMANCE COMPUTING

Parallel Computing

- Fast computation using many computation units
- Reduction of communication among computing units

Node	88,128	864 rack ×102
CPU	88,128	88,128 node × 1
core	705,024	88,128 CPU × 8

HPCの工学利用

- 大型並列計算機の計算性能
 - 大自由度モデル 100億自由度
 - 高速 10分/ステップ

◆課題

● ハードウェアの進歩に追随する持続可能なソフトウェアの維持・開発

◆FEMを使う構造解析

- 金属材料を使う1D/2D構造部材から構成される構造物の解析には、HPC を利用するFEMは不要
- 鉄筋コンクリート・地盤材料から構成される、比較的「バルク」な構造物の 解析には、HPCを利用するFEMが必須

CFDと構造解析

CFD (Computational Fluid Dynamics)

- 実験の代替となるようHPCを利用
- 乱流解析·衝撃解析
- 解析結果の品質保証

汎用FEMパッケージの利用 品質保証ができるレベル?

◆構造解析

- 金属材料・棒板材・準静的のため、HPCは不要.
- ●建設材料,3次元,動的のHPCは必須

HPCの断層問題への適用

◆直近の最大地震動の評価

●動的 未観測の「キラーパルス」の評価

- ●非線形 岩盤·地盤材料
- ・破壊 既往断層の滑り、新たな断層の発生・進展

◆断層変位の確率的評価

- 発生確率
- 断層の出現位置・出現長さ
- 断層変位量

地殻・地盤・建屋のMMA解析

- 地殼構造
- 地盤構造
- 構造物

並列計算のための領域分割

並列計算のための数値計算

- ◆高速ソルバ:前処理付CG法
 - 幾何マルチグリッド(Geometric multi-grid)
 - 精度混合演算(Mixed precision arithmetic)

◆要素技術

- メモリアクセスの高速化のためのEBE (Element-by-Element) 剛性マトリクス
- 直交離散化基底を使った集中質量マトリクス
- 高効率I/Oのための圧縮列収納
- 時間積分の高速化のための高次予測子

解析解との比較

観測された小地震の再現

観測された小地震の再現

中越沖地震

断層すべり:*を使用

* H. Miyake, K. Koketsu, K. Hikima, M. Shinohara, T. Kanazawa, "Source fault of the 2007 Chuetsu-oki, Japan, Earthquake," Bull. Seismol. Soc. Am., 100, [1], 384-391 (2010).

ミクロ解析モデル

NPP:	
Wall thickness:	0.5~2.5 m
Floor thickness:	0.5~1.0 m
Base mat thickness:	6.5 m

domain dimension540 x 540 x 250 mnumber of nodes33,613,809number of elements22,443,096

NPP MODEL

MatID	Vp (m/s)	Vs (m/s)	ρ (kg/m3)	h (%)
1	1529.7	300	1825	5
2	1529.7	300	2000	5
3	1580.7	310	1780	5
4	1625.1	490	1700	3
5	1710.8	560	1750	3

2007 CHUUETSU OKI EARTHQUAKE

* H. Miyake, K. Koketsu, K. Hikima, M. Shinohara, T. Kanazawa, "Source fault of the 2007 Chuetsu-oki, Japan, Earthquake," Bull. Seismol. Soc. Am.,100, [1], 384-391 (2010).

NEW STAGE OF HPC APPLICATION

Capability Computing for Accuracy

- A mass-spring system solution is an approximation of an HPC FEM solution.
- The HPC FEM solution provides more accurate estimation, even though it needs large scale numerical computation.

Capacity Computing for Uncertainty

- Numerous models generated for one target are analyzed to account for effects of uncertainty on response.
- Uncertainty probability is converted to response probability via HPC computation.

MatID Vp (m/s) Vs (m/s) ρ (kg/m3) h (%) 1 1529.7 300 1825 5 2 1529.7 5 300 2000 5 3 1580.7 310 1780 4 1625.1 490 1700 3 5 1710.8 1750 3 560

IMPROVED MODEL

domain dimension540 x 540 x 250 mnumber of nodes33,613,809number of elements22,443,096

FUTURE MODEL: RC PIER

column: concrete

FUTURE MODEL: GROUND

- domain of 1,250 x 1,250 m (3 layers)
- 15 Hz: minimum element dimension 1.0 m
- numerical convergence in 5 ~ 15 Hz

	V_p (m/s)	V_s (m/s)	ρ (kg/m ³)	$h_{\rm max}$ or h	γ_r
1st layer	1,210	150	1,500	0.25	0.005
2nd layer	1,380	255	1,800	0.05	00
bedrock	1,770	490	1,900	0.005	00

DOF	1,022,630,349
Node	340,876,783
Element	252,737,051

活断層の物理

自然現象としての断層形成の解明

- 破壊現象
 量子力学では未だ扱えない?
- 分岐現象 ● 予測可能か不可能か?

雁行断層の模擬実験:せん断破壊と分岐の繰り返し

Analysis of variability in response that is induced by uncertainty of material property/distribution

STOCHASTIC FEM

PROBLEM SETTING

Riedel shear bands (by Tani & Ueda)

material parameters			
mean of $E(kgf/cm^2)$	12.5		
ν	0.25		
friction angle (°)	51		
SD of E (kgf/cm ²)	0.15		
corelation length of E (cm)	50		

periodic structure model for surface layer

EVOLUTION OF SHEAR BAND

periodic structure model

NOJIMA EARTHQUAKE FAULT

Model

- configuration thickness 4.8[m]
- angle
- thickness 4.8[m]
- dip: 90[deg], direction: 45[deg]

Results of Simulation

- echelon faults (bifurcation)
- comparison of configuration
- failure probability

parameters of material property

mean Young modulus [kN/m ²]	6125
Poisson ratio	0.25
density [g/cm ³]	2.1
friction angle [deg]	51
cohesion [kN/m ²]	38
standard deviation of Young modulus [%]	30
correlation length of Young modulus [m]	2

geological map of Nojima Island

ECHELON FAULTS (BIFURCATION)

coupling of lateral and normal faulting $x_3=4.8[m]$ $\frac{1}{2} = 4.8[m]$ $\frac{1}{2} = 4.8[$

evolution of plastic deformation: distribution of maximum shear strain

おわりに

◆HPCを利用できるFEMの開発・利用

●品質保証:数値計算の収束性,実験結果の再現

- 高速ソルバとモデル自動構築
- capability computing & capacity computing

◆HPCの利用が望まれる断層問題

- 直近の最大地震動評価
- 断層変位の確率評価

計算科学・計算機科学との境界での持続的コード開発が重要であり, ソフトウェア工学の利用が必須