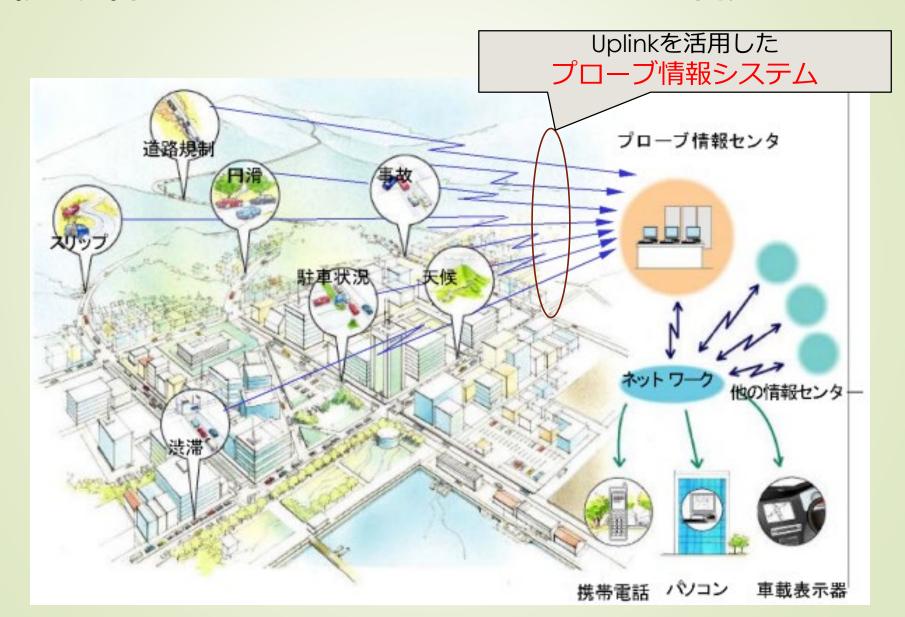
道路交通分野への インフラビッグデータ活用 「スマートフォンのセンサデータ活用の一例」

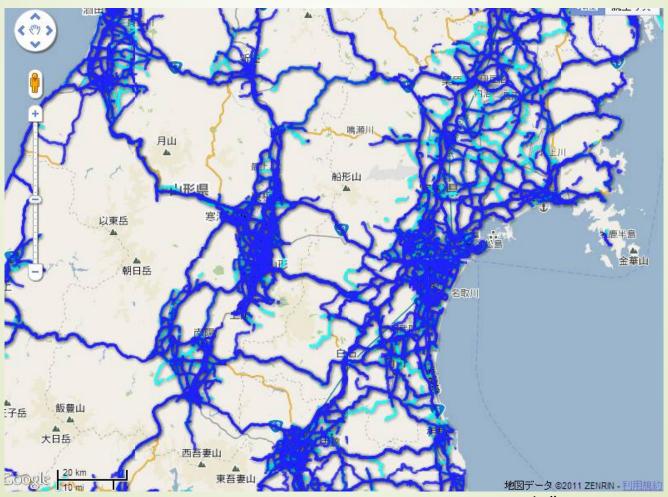
大阪産業大学工学部 電子情報通信工学科 熊澤宏之

内容


- ■プローブ情報システム:移動するセンサ
- ■スマートフォンを用いた プローブ情報システム
 - ▶システム構成
 - ▶スマートフォンのセンサ
- ■収集データの処理例:移動モード検知
 - ▶移動モード検知に用いるセンサ
 - ▶移動モード検知の方法
 - ■研究遂行上、問題と感じていること

プローブ情報システム:移動するセンサ

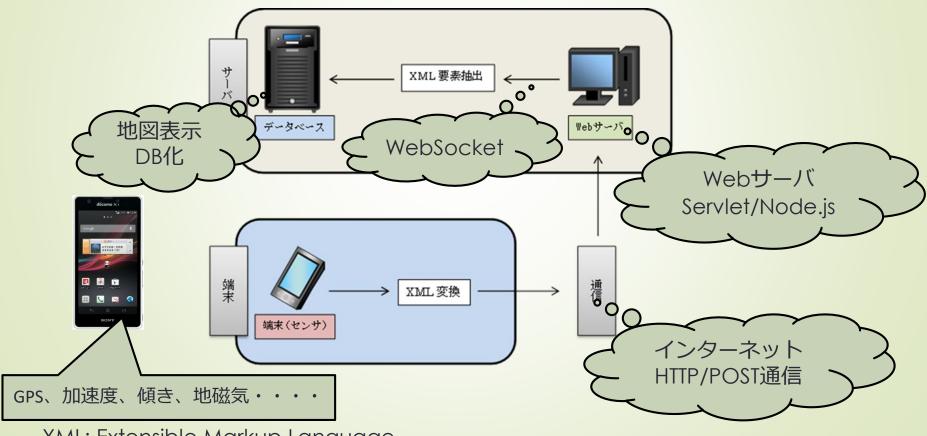
- 従来のセンサシステムは、
 - インフラにセンサを固定設置し、通信ネットワークで情報を収集
 - ■定点観測
 - ▶インフラにセンサを設置するコスト、種々規制
- 一方、近年、人や車がセンサを持って移動
 - ▶人:スマートフォン
 - ■車:カーナビ+CAN
- → それに通信機能が加わると、
 - ▶移動するセンサ (vs.固定設置センサ)
 - ▶移動に関わる様々な情報を柔軟に収集可能


CAN: Controller Area Network

移動体そのものをセンサとして活用

移動体から情報を集めると何ができる?

ITS Japanによる統合交通情報(東日本大震災) 青色で表示されている道路は、前日の0時~24時の間に通行実績のあった道 路を、水色は前々日の0時~24時の間に通行実績のあった道路を示している。

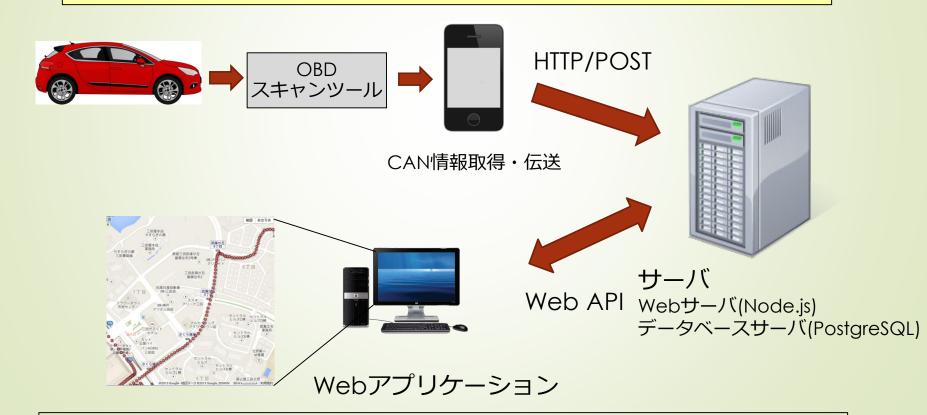

出典:http://www.its-jp.org/saigai/

内容

- ■プローブ情報システム:移動するセンサ
- ■スマートフォンを用いた プローブ情報システム
 - ▶システム構成
 - ▶スマートフォンのセンサ
- ■収集データの処理例:移動モード検知
 - ▶移動モード検知に用いるセンサ
 - ▶移動モード検知の方法
 - ■研究遂行上、問題と感じていること

スマホを用いたプローブ情報システム ーシステム構成 –

スマートフォンの持つセンサ情報をインターネット標準の通信 技術、Web標準のサーバ技術で効率的に収集



XML: Extensible Markup Language

HTTP/POST: Hypertext Transfer ProtocolのPOSTコマンド

車向けプローブ情報システム

- -システム構成 -
- 車が持つ制御情報を取り出し、サーバへ伝送するための標準インタフェースや標準伝送技術の研究
- 収集した情報をオープンデータとして公開し、Webアプリケーションを作成する研究

OBD (On-board diagnostics) スキャンツール:車のCANから制御情報を取り出すツール CAN(Controller Area Network):車を制御するための情報を伝送する車内通信ネットワーク

車向けプローブ情報システム

- 車載装置 -

実験風景:車にOBDスキャンツール、タブレットを接続

OBDスキャンツール Androidタブレット WiFi経由LTE回線

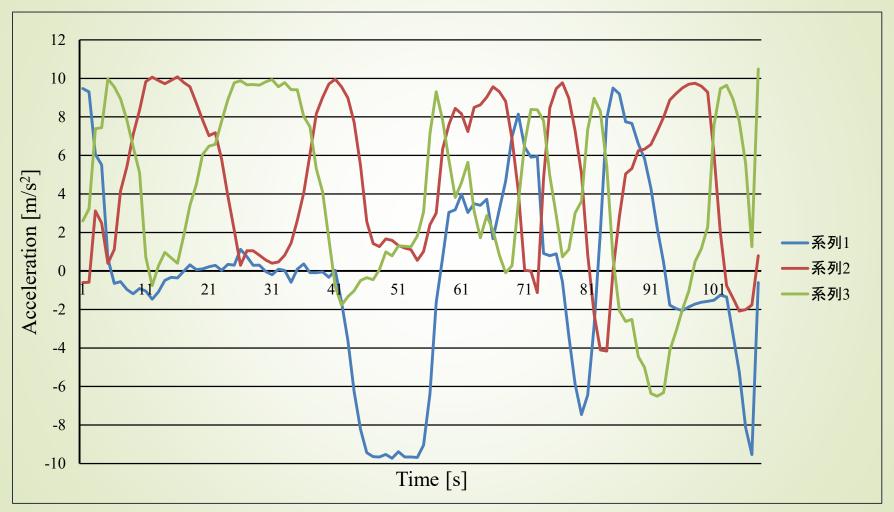
スマートフォンのセンサ

- GPS
 - ▶緯度、経度
- Acceleration関連
 - ■デバイスのX、Y、Z軸方向加速度
 - Gravity
 - Linear Acceleration
- Position Sensors
 - Gyro: X、Y、Z軸周りの回転角速度
 - Geomagnetic Field Sensor: 地磁気
 - Rotation Vector: X、Y、Z軸周りの回転角度
 - Orientation: X、Y、Z軸周りの回転角度(非推奨)
- その他

斜体字:ソフトウェアセンサ

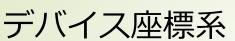
内容

- ■プローブ情報システム:移動するセンサ
- ■スマートフォンを用いた プローブ情報システム
 - ▶システム構成
 - ▶スマートフォンのセンサ
- ■収集データの処理例:移動モード検知
 - ▶移動モード検知に用いるセンサ
 - ▶移動モード検知の方法
 - ▶研究遂行上、問題と感じていること

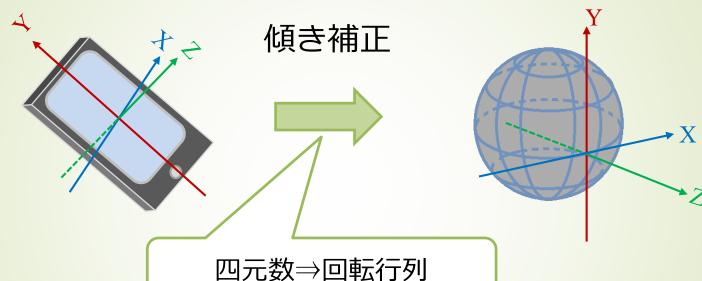

スマートフォンセンサを利用した 移動モード検知

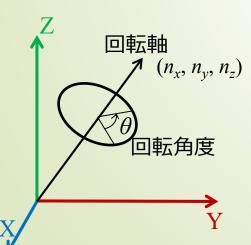
- ■スマートフォンを所持したユーザがど のような移動モードで移動しているか を検知
- ▶移動モード
 - ▶徒歩、バイク、車、バス、電車など
 - ▶移動モードによって、加速度、速度などが特徴的な特性を持つと仮定

移動モード検知に用いるセンサ


- ■加速度→動きを反映
 - 加速度はスマートフォンの座標系の各軸に 沿って計測される→デバイス座標系
 - ■問題:実応用において、加速度データがデバイスの保持の仕方(傾き)に応じて変化
- **■**GPS→位置と速度
 - ■位置情報の差分から速度を計算
 - ■問題:誤差が不可避、地下・トンネルでは利 用不可

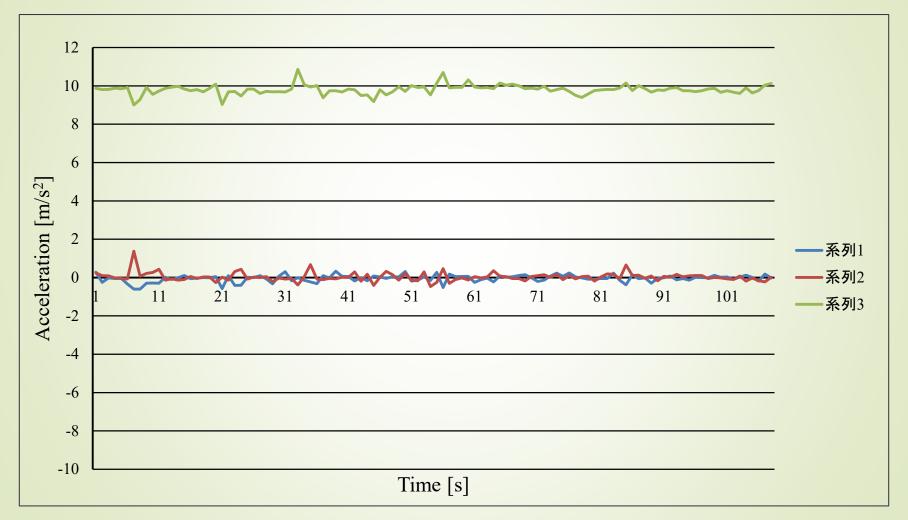
加速度データ: -スマートフォンをゆっくり回転-




デバイス座標系での加速度データ

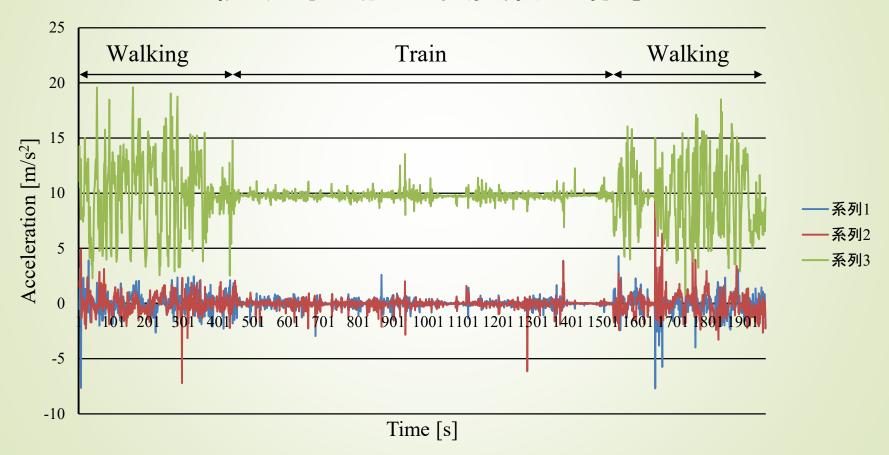
加速度データの前処理

参照座標系



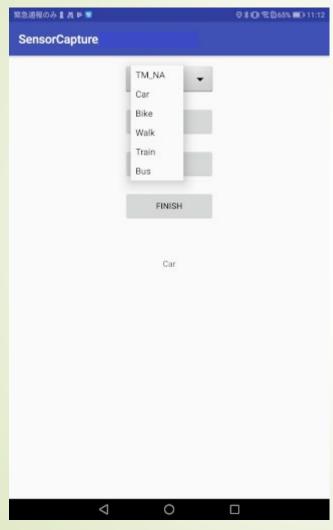
四元数の定義

$$[\cos(\theta/2) (n_x^*\sin(\theta/2) n_y^*\sin(\theta/2) n_z^*\sin(\theta/2))]$$
 ここで、 (n_x, n_y, n_z) : 回転軸 θ : 回転角度


前処理後の加速度データ: -スマートフォンをゆっくり回転-

参照座標系での加速度データ

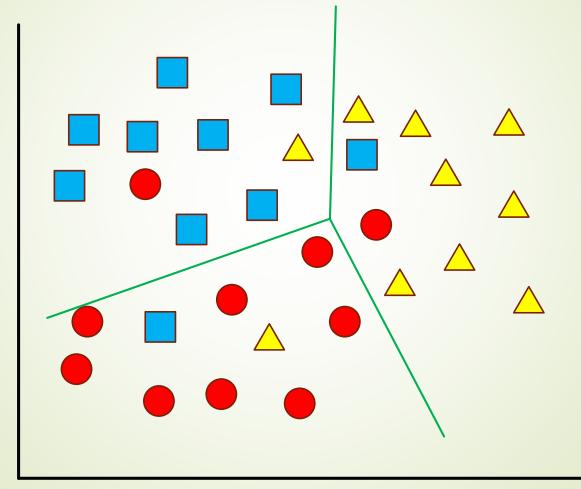
移動モード検知の検討


-移動時の加速度変化の様子-

センサデータの収集・処理

- ▶センサデータの収集
 - ■種々移動モードで多くのセンサデータを収集 →移動モードとセンサデータを記録
 - ▶センサデータから特徴量を算出
 - ■特徴量:平均、標準偏差などの統計量
- ▶処理:分類器の設計
 - ■【仮定】特徴量が移動モードによって変化
 - ▶特徴量を移動モードに分類する分類器を設計
 - ▶機械学習を適用

センサデータ収集アプリケーション


緊急通報のみ 🛮 战 🗦 🐷 Ø \$ 101 ₹ 865% ■ 11:13 SensorCapture, Car START STOP FINISH currentTime = 1542334426365 acc = 1.5993267 numSatInFix =10 lat = 34.707165472176 Ion = 135.64556699811448 Dir = /storage/emulated/0/ SensorLogger/Car 0

移動モードの選択

データ収集中

特徴量の分類器

特徴量2

評価結果の一例

補正後の加速度と速度の組み合わせによる移動モードの検出の評価結果(決定木)

		Estimated Values					Recall
		Bike	Train	Bus	Walk	Car	(%)
	Bike	11389	34	206	203	168	94.9
TRUE	Train	16	(11374)	336	20	254	94.8
Values	Bus	167	347	10529	17	940	87.7
	Walk	126	29	49	11751	45	97.9
	Car	157	266	1062	32	10483	87.4
Precision (%)		96.1	94.4	86.4	97.7	88.2	Accuracy 92.5%

検知精度の向上を目指した研究

Random Forest

 M. A. Shafique, et al: Use of acceleration data for transportation mode prediction, Transportation (2015) 42:163–188

Convolutional Neural Network

Xiaoyuan Liang, et al: A Convolutional Neural Network for Transportation Mode Detection Based on Smartphone Platform, 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems

Deep Neural Network

Shih-Hau Fang, et al: Learning Transportation Modes from Smartphone Sensors Based on Deep Neural Network, IEEE Sensors Journal (Volume: 17, Issue: 18, 2017)

Post processing of machine learning

H. Kumazawa, et al: Accuracy improvement of transportation mode detection using machine learning classifier, 25th ITS World Congress, 2018.

移動モード検知の応用

- ■人々がどのような手段で移動しているかを検知
 - ●従来、移動モードは、アンケート調査により調べていた。
 - ▶自動化することでより正確なデータが集まる。
 - ▶データ収集のリアルタイム化が可能
- ▶移動モードが分かると
 - ■高度な交通センサス
 - ▶移動状況に応じた情報提供
 - ▶ライフログ
 - ▶交通需要・混雑度把握
 - ▶公共交通利用時の乗り換えなど移動経路把握
 - ▶アイデア次第で様々な可能性がある。

研究遂行上、問題と感じていること

- ▶共通的な評価データが無い
 - ▶独自に集めるしかない
- ▶評価データの統一性がない
 - ■サンプリング周波数
 - ●データ量
 - ▶センサの特性
 - ▶ハードウェア依存→使用するスマートフォン依存
 - ■データを収集する人の特性
 - ■人の癖
 - ▶利用する交通機関・車・バイクのタイプ
 - • •