

「6.1 津波伝播・遡上計算」 6.1.3 数値計算の実施

(1) 数値計算領域の設定

- (2) 計算格子間隔の設定 : 計算格子間隔の異なる部分領域の接続
- (3) 地形データの作成(本編3.2)
- 海域地形データ,陸域地形データ,過去の地形データ
- (4) 構造物データの作成
- 1) 建物等の構造物および二次元構造物(線的構造物)
- 2) 耐震性・耐津波性の考慮
- 3) ゲートやカーテンウォール等の水中部に開口がある構造物
- (5) 諸係数等の設定
- 1) 摩擦項に関係する係数
- 2) 水平渦動粘性係数
- 3) 津波先端に関係する水深
- (6) 計算時間および計算時間間隔の設定

「6.1 津波伝播・遡上計算」 6.1.4 三次元モデル

(1) 基本的考え方

- ▶ 三次元モデルは、構造物周辺等の津波の三次元的な流況を再 現する場合や、波力をより精密に評価する場合の有用な手段 として用いることができる。
- ただし、津波の発生、海洋伝播、陸上遡上の3つの過程をすべて三次元モデルで実施するには膨大な計算資源が必要。
- そのため、計算領域の限定、現象の再現時間の適切な設定、 平面二次元モデルとの適切な連結等の工夫が必要。

本編 p.95

「6.1 津波伝播・遡上計算」 6.1.4 三次元モデル (2) 代表的な三次元流体解析コード

	脾析コート名	山田英
1	CADMAS-SURF/3D	沿岸技術研究センター(2010):数値波動水槽の研究・開発:CADMAS- SURF/3D:数値波動水槽の耐波設計への適用に関する研究会報告書,沿岸技術 ライブラリー, No.39.
2	OpenFOAM	OpenFOAM Foundation: OpenFOAM User Guide, http://www.openform.org/docs/(2016年4月参照).
3	高潮津波シミュレータ (STOC:Storm Surge and Tsunami Simulator in Oceans and Costal Areas)	富田孝史・柿沼太郎(2005):海水流動の3次元性を考慮した高潮・津波数値シ ミュレータSTOCの開発と津波解析への適用,港湾空港技術研究所報告,第44 巻,第2号,pp.83-98. 髙橋研也・富田孝史(2013):3次元非静水圧流動モデルを用いた久慈湾におけ る東北地方太平洋沖地震津波の再現計算,土木学会論文集B2(海岸工学), Vol.69, No.2, pp.L166-L170.
4	DOLPHIN-3D	川崎浩司・袴田充哉(2007):3次元固気液多相乱流数値モデルDOLPHIN-3Dの開発と波作用下での漂流物の動的解析,海岸工学論文集,第54巻,pp.31-35.
5	津波複合災害予測モデル	米山望・永島弘士(2009):複雑な移動・回転を考慮した津波漂流物の三次元数 値解析手法の開発,土木学会論文集B2(海岸工学), Vol.B2-65, No.1, pp.266-270.
6	C-HYDRO3D	木原直人・松山昌史(2010):津波による土砂移動問題に対する静水圧3次元津 波解析システムC-HYDRO3D Tsunamiの適用性の検討–インド洋大津波による Kirinda港周辺における土砂移動解析–,電力中央研究所報告, N09004.

.2	2.3	数値計算の実施				付属編 p.	p.4- 4-8	- 84^ 7
J	禹編4.	6.2 適切な格子間隔に関	951	策 討				
i	計昇条件				乳中体			
	<u> 売朋友</u>	<u>現日</u> 2問隠(m)		4 5	設定1但 20 (0 120			
	エ间伯	31811 (11) 3181 (5)		15	0.05			
	间 异吋 海水 、	町町間 (S) 毎年間のマーング知度経数 (m-1/3s)			0.05			
	海水の	温耐料性 <u>低数 (m2/s</u>)			0.03			
	1-971-021		876	-	10.0			
	モデル	パラメータ	記™ (単位	ラ 立)	設定値			
		下層(土砂層)						
		底面のマニング粗度係数	n (m ⁻¹	⁷³ s)	0.2, 0.3, 0	.4		
	二層流	下層(土砂層)の渦動粘性係数	v(m ²	/s)	0.01			
		抗力係数	C _D (-)	0			
		界面抵抗係数	f _{inter} (-)	0			
	KIS	水平方向伝播速度	U (m	/s)	10, 20, 40	0		
	KLJ	継続時間	T (s	5)	120, 240, 4	80		

6.2.3 数値計算の実施 付属編4.6.2 適切な格子間隔に関する検討

▶ 計算結果(最大水位と最小格子間隔ケースとの差

斜面勾配は6度,土砂層の粗度係数nは0.4m^{-1/3}・s 斜面勾配は6度,伝

一層流モデル、沖側評価占

格子間隔	最大水位 (m)		Δx=15mケースとの差			
Δx (m)	上昇量	下降量	上昇量	下降量		
15 (=L/40)	0.05219	-0.00679	-	-		
30 (=L/20)	0.05453	-0.00748	+4.5%	10.2%		
60 (=L/10)	0.04963	-0.00779	- 4.9 %	14.7%		
120 (=L/5)	0.03675	-0.02206	-29.6%	224.9%		

二層流モデル,岸側評価点						
格子間隔	最大水	.位 (m)	Δx=15mケースとの差			
Δx (m)	上昇量	下降量	上昇量	下降量		
15 (=L/40)	0.00703	-0.04920	-	-		
30 (=L/20)	0.00916	-0.04801	+30.3%	-2.4%		
60 (=L/10)	0.01685	-0.04158	+139.7%	-15.5%		
120 (=L/5)	0.02347	-0.02750	+233.9%	-44.1%		
120 (=L/5)	0.02347	-0.02750	+233.9%	-44.1%		

二層流モデルの解は指向性が強く出るため,沖側 評価点では上昇側が,岸側評価点では下降側が支 配的となる。

「ケースとの差)	
科面勾配は6度, 伝播速度Uは40	m/s, 継続時間Tは120
KLSモデル,沖側評価点	
格子間隔 最大水位 (m)	Δx=15mケースとの差

p.4-87

32

格子間隔	最大水位 (m)		Δx=15mケ	-スとの差		
Δx (m)	上昇量	下降量	上昇量	下降量		
15 (=L/40)	0.05057	0.06758	-	λ -		
30 (=L/20)	0.0496	0.07097	-1.9%	+5.0%		
60 (=L/10)	0.05327	0.06701	+5.3%	-0.8%		
120 (=L/5)	0.06338	0.05289	+25.3%	-21.7%		

KLSモデル,岸側評価点

			A	TAXABLE REAL PROPERTY AND ADDRESS OF ADDRES		
格子間隔	最大水位 (m)		Δx=15mケースとの差			
∆x (m)	上昇量	下降量	上昇量	下降量		
15 (=L/40)	0.0176	-0.03334	-	X -		
30 (=L/20)	0.01758	-0.03372	-0.1%	1.1%		
60 (=L/10)	0.01797	-0.0388	2.1%	16.4%		
120 (=L/5)	0.01968	-0.03807	11.8%	14.2%		

二層流モデル, KLSモデルともに, 本計算例において は,空間格子間隔を地すべり域の大きさLの1/20程度 とした場合に最大水位変化量が概ね収束した。