崩壊土砂および防護工の個別要素法による モデル化

MODELING OF DYNAMIC INTERACTION OF SLOPE FAILURE AND BARRIER STRUCTURES WITH THE DISTINCT ELEMENT METHOD

倉岡 千郎¹•中島 祐一²

Senro KURAOKA and Yuichi NAKASHIMA

¹日本工営株式会社中央研究所(〒300-1259 茨城県つくば市稲荷原 2304) E-mail: a4982@n-koei. jp ²日本工営株式会社中央研究所(〒300-1259 茨城県つくば市稲荷原 2304)

Key Words: slope failure, distinct element method, impact force, run-out distance

1. はじめに

「土砂災害警戒区域等における土砂災害防止対策の 推進に関する法律」が公布され、土砂災害の統計デー タに基づいて、急傾斜の高さ(H)の 2 倍を目安として警 戒区域が検討される.ただし、斜面形状、斜面を構成す る土砂の粒度、粒子の形状、水分の量、植生および対 策構造物の有無によって、到達距離が異なるものと考 えられる.本稿では特にエネルギー吸収型対策工が崩 壊土砂の到達距離に与える影響に着目した.

そこで、礫質の土砂を対象とし、土砂を粒子の集合 体としてモデル化する個別要素法(DEM)を用いて対策 工の効果をモデル化する方法について検討した.

まず、個別要素法(DEM)により土砂とエネルギー吸 収型対策工のモデル化を試みた.ポケット式落石防護 網(図-1)の設置された斜面において発生した崩壊を再 現することでモデルの検証を行った.さらに崩壊高さや 土砂の量を変化させた感度解析を行ってエネルギー吸 収型対策工が崩壊土砂の到達距離に与える影響を検 討した.

崩壊土砂の危険性は到達範囲だけでなく、構造物に 衝突した際の荷重(衝撃力)により評価される.

衝撃力の評価手法として、崩壊土砂の衝撃力の実験 結果を参考に DEM モデルが検証されている¹⁾²⁾.

DEM では取り扱える粒子数には限りがあるので、砂 のように細かい粒子一つ一つの運動を解析することは 難しい.しかし、全ての粒子をモデル化しなくても、一つ の粒子が複数の粒子を表すものと考え、一定の数の以 上の粒子を用いれば、前述した到達域や衝撃力挙動を 表すことは可能と考えられる²⁰.そこで、擁壁に作用する 衝撃力を DEM によって求める方法を検討した結果に ついても説明する.

図-1 エネルギー吸収型対策工の例.

 1 崩壊土砂とエネルギー吸収型対策工のモデ ル化

(1) 解析モデル

解析は単位幅を有する 2 次元とした. DEM を用いて 土砂を円形粒子でモデル化すると、円形粒子は回転に 抵抗しないため傾斜した面の上では停止しない. その 結果、土砂の崩壊を円形要素の集合で表すと到達域が 過大になる恐れがある. そこで、土砂を複数の円形粒子 が剛結したモデルとして表すことで回転に対する抵抗を 持たせた. ここで剛結した粒子をユニットと呼び図-2 の ように二つ結合したユニットと三つ結合したユニットを作 成し、単体の粒子を混ぜて土砂を表した. 図-2 に示す ようにこれらのユニットは傾斜のある面上でも摩擦があ れば安定している.

これらのユニットの内部摩擦角などのパラメータや各 ユニットの配合については、安息角を検証する基礎テス トを別途行い決定した.

エネルギー吸収型対策工としては、ポケット式落石防 護網を対象とした.モデル化する効果は、支柱の支持 効果、ネットのエネルギー吸収効果、ネットの上端と下 端を横方向につなぐ横ロープのエネルギー吸収効果が 挙げられる.ネットを表す方法としては粒子間に引張り に抵抗するばねを導入し、モデル化したネットの伸長に ともなうエネルギーが可能吸収エネルギー量を超えた 時に、粒子間のばねを切断する.

図-2 DEM で用いた土砂を表す粒子

図-3 防護網(ネット)のモデル化

支柱の効果はネットを表す上端の粒子がバネで支柱 に連結しているものとし、このバネの変位から支柱に作 用する荷重を求め、支柱の耐力を超えた場合に支柱を 表すバネを切断する.また、横ロープの効果は、ネットを 表す上端と下端の粒子の変位に比例するバネを設定し て表した.

(2) 再現解析

実際に発生した崩壊土砂と防護網(ネット)の変形を再 現することで解析モデルの検証を行なった.崩壊した土 砂は崩壊長が15m程度であり、ネットを支える支柱は抜 けたがネットは破れず、横ロープの効果によって土砂と ネットがらみ出すような形に変形して停止した.設定した パラメータを表-1 および表-2 に示す.バネ剛性は法線 方向(kn)と接線方向(ks)を同じとした.

パラメータ	本解析での設定
・ユニット数	・424 個
・各ユニットの配合	・1粒子、2粒子、3粒子のユニ
	ットを1:1:1の割合で配合
粒子の密度	1800 kg/m ³
粒子の粒径	0.22 m
内部摩擦角	30 度
バネ剛性(kn=ks)	50 kN/m
反発係数	
$e = (v_2' - v_1')/(v_1 - v_2)$	0.1
(2粒子の場合、'は衝	0.1
突後の速度を示す.)	

表-1 土砂を表す粒子のパラメータ

表-2 エネルギー吸収型対策工を表すパラメータ

パラメータ	本解析での設定
ネットを表す粒子の径	0.4 m
ネットを表す粒子の密度	単位幅の重さが実際の重さ に合うように設定
可能吸収エネルギー量	800 kJ
横ロープのバネ剛性	ネットの 1/100

支柱の耐力および横ロープの剛性を調整した結果、 図-4に示すように現場で観察された土石とネットの変形 を概ね表すことができた.しかしながら、ネットを支える 横ロープの実際の耐力とエネルギー吸収力は明瞭では なく、支柱や横ロープの各々の妥当性を詳細に評価す るにはいたっていない.また、横ロープの効果は3次元 的であることから3次元モデルの必要性も考えられる.

図-4 崩壊土砂と防護網の再現解析

(3) 感度解析

傾斜や落下高さ、崩壊長さを変化させた感度解析(表 -3)を実施して、防護網(吸収エネルギー100kJ)のある場 合と無い場合の土砂の到達距離(先端の粒子の位置)を 求めた.感度解析では条件を簡略化するために横ロー プと支柱の効果はモデル化していない. 一例を図-5 に 示す. 図-5 右図は、防護網の伸長に伴うエネルギーが、 可能吸収エネルギー量を超え破断した直後の様子を示 す.

また、土砂の速度と衝突荷重(移動力)を求める簡易 式より衝突力を求め、DEM から求めた粒子の平均速度 から算定した衝突力と比較した.土砂の量はポケット式 落石防護網を対策工として施工している斜面について の災害事例を参考に設定し、DEM のパラメータは再現 解析と同じとした.

防護網がある場合と無い場合の到達距離の差を求め て最大運動エネルギー(E)との相関を調べた.ここで最 大運動 Eとは、時間変化する運動 Eの最大値である.

表−3 感度解析ケース		
傾斜	40,60,70,80度	
落下高さ	10,20 m	
(法尻から崩壊頭部までの高さ)		
崩壊長さ	5,10 m	

図-5 平面型崩壊モデルの一例

図-6 最大運動エネルギーと到達距離の比

防護網がある場合と無い場合の到達距離の比を最大 運動Eにとの関係で見ると、図-6のように最大運動Eに 関わらず、ネットが破断したケースで 10%~15%程度到 達距離が短くなる.

次に法尻位置での単位面積あたりの衝突力(Fsm)を 求めた.一つの方法として芦田他 344が提案する基本式 (1)に基づいて土砂の速度を計算し、算定した速度から 落石対策便覧 5)に掲載されている式(4)を用いて Fsm を 求めた.ただし、対象とした斜面は斜面勾配が下部で 水平に変化するので、速度の計算にあたっては水平方 向の速度成分が保存されると仮定した式 4を用いた. 次 に DEM から得られた速度から式(4)より Fsm を求めた. なお、DEM から求めた速度は粒子の平均座標の水平 成分が法尻に達した時の全粒子の平均速度である.

$$U'_{f}(x') = \left\{ U'_{f0} e^{2ax'} - \frac{b}{a} \left(1 - e^{2ax'} \right) \right\}^{1/2}$$
(1)

(1)式の a 及び b は次の諸量である.

$$a = -\frac{2}{\{(\sigma - 1)c + 1\}} f_b$$
 (2)

$$b = \cos\theta \left[\left\{ \tan\theta - \mu_k \frac{(\sigma - 1)c}{\{(\sigma - 1)c + 1\}} \right\} \right]$$
(3)

ここに、U'_f:土塊の無次元化移動速度、U'_f:土塊の 無次元化初期移動速度、x':土塊の無次元化斜面方向 移動距離、:σ土粒子の比重、c:体積濃度、f_b:流体抵 抗係数、θ:斜面の傾斜角、μ_k:動摩擦係数.

これらのパラメータのうち f_b は 0.025 とした. この値は、 斜面の傾斜が 60 度のケースで DEM の平均速度と整合 するように設定した値であり、文献 ⁴⁾に記載されている値 の範囲に入る. その他のパラメータが速度に与える影響 は小さく文献 ⁴⁾を参考にして *c*=0.5, μ_k =0.57、 σ =2.0 と した.

衝突力(Fsm)は、速度が算定されれば以下の式(4)により算定される.

$$P = \rho_s \cdot V^2 \cdot A \cdot \sin^2 \alpha \tag{4}$$

ここに、P:構造物に作用する衝突力(N)、 ρ_s :崩土 の密度(kg/m³)、V:崩土の到達速度(m/sec)、A:構造 物の面に対する崩土の作用投影面積(m²)、 α :崩土の 構造物への衝突角度である.本解析では斜面に直交 する単位面積の衝突壁を想定し、 α =90度、A=1m²であ る.

簡易式と DEM から求まる法尻位置の Fsm を比較し たところ、図-7 に示すように斜面の傾斜角が 60 度よりも 大きくなるにしたがって簡易式の Fsm は顕著に小さくな る. これは簡易式で法尻の水平面における速度を算定 する際に上部斜面における速度のうち水平方向の成分 のみが保存されると仮定するためである. すなわち、上 部斜面と水平部の成す角度が 90 度に近いと、水平方 向の速度成分が顕著に小さくなる. 一方、DEM では粒 子が水平部に衝突しても分散して連続的に移動するの で速度が簡易式ほど急激に低下しない. また、DEM で は、斜面の傾斜角が 70°から 80°に変化すると、Fsm が 急増するが、これは、今回の平面型崩壊モデルでは、 傾斜角が 80°の場合、土砂の移動現象が、すべり運動 よりも自由落下に近い状態となっていることが一因として 考えられる.

図-7 斜面の傾斜角と単位面積あたりの衝突力

3. 擁壁に作用する衝撃力の解析例

(1) 目的

前節の落石防護網の解析では、衝突力(Fsm)は DEM から求めた全粒子の平均速度から式(4)を用いて 算定した.ここでは崩壊土砂が擁壁に衝突した際の Fsmを DEM 粒子と壁との接触力から直接求める方法と 適用例について述べる.ただし、ここで紹介するモデル 化方法は文献¹⁾²⁾に記載されており、ここでは概要のみ を述べる.

(2) 解析モデル

崩壊土砂の衝撃力の実験結果を参考に DEM モデル が検証されている¹⁾²⁾.

実験⁶⁾の再現解析に用いたモデル形状を図-8 に示し、 用いたパラメータを表-4 に示す.

本解析は3次元であり、球形の粒子を結合しない で用いた.既往の再現解析²⁾によれば、バネ剛性と粒 子数が衝撃力に与える影響が大きく、粒子数は10,000 以上とし、バネ剛性を2~10 kN/m の範囲に設定した 際の再現性が良好である.

ただし、これらの設定は土砂量が 0.1 m³程度の実験に基づくものであり、数 10m³以上の土砂量における適用性については実際の崩壊現象に基づく検証が必要と考えられる.

図-8 衝撃力の実験のモデル形状

表-4 土砂を表す粒子のパラメータ

パラメータ	本解析での設定
粒子の密度	2476 kg/m ³
粒径 mm,(個数)	39.5 (10,000)
摩擦係数	0.6
粒子間バネ剛性(kn=ks)	2 kN/m
反発係数	0.1

適用例の一つとして、粒子間の引張り力粘着力を 変えた解析結果を図-9に示す.比較する実験結果は ないものの、粒子が固まりになって落下すると荷重 が大きくなる可能性が示唆され、土砂の粒度分布や 粒子の大きさなどによって衝撃力が異なることを表 している.

(3) 擁壁に作用する衝撃力を求めた例

ここでは、高さ2mの擁壁を設定して15mの落差から 土砂を落下させ、仮想ではあるが実規模レベルの解析 を実施した(図-10).解析ケースとしては、背面に水平な 面を有する堆積土砂がある場合とない場合を設定し結 果を比較した.試行的な計算を行う上で計算時間の短 縮するために粒子数は5000個とし、幅0.5mで仕切ら れた流路を流下させた.粒径は0.06m、バネ剛性は 10kN/mとし、その他のパラメータは表-4と同じである. 土砂の量は間隙を考慮して単位幅に換算すると1.5m³ 程度である.

擁壁の垂直部分に作用する衝撃力の時間変化を見る と、図-11 に示すように背面に水平な面があるケースの 荷重は、水平な面のないケースに比べて極めて小さい. これは、土砂が 45°傾斜した面から擁壁背面の水平部 分に衝突する際にエネルギーを失うためである. 定量 的な検証は必要としても、衝撃力は地表面形状の影響 を大きく受ける可能性を示している.

図-10 擁壁と崩壊土砂のモデル形状

図-11 擁壁に作用する衝撃力の時間変化

4. まとめ

DEM は崩壊土砂とエネルギー吸収型対策工をシミュ レーションする方法として可能性があり、防護網の吸収 エネルギーを考慮した土砂の到達距離を推定する上で 参考になるものと考えられる.ただし、再現解析のケー スが少ないため土砂の粒度や量の異なる様々な崩壊事 例の再現を実施することで解析の信頼性を向上させる 必要がある.

簡易式及び個別要素法から求められる衝突力(Fsm) については、斜面勾配により相違点が見られた. 今後 は、実現象に照らしあわせて相違点の原因を検討する 必要がある. また、多角形の礫などを表すために複数 の円形粒子を剛結して用いた. このような粒子の形状効 果、配合、バネ剛性などが到達距離に与える影響を系 統的に研究する必要がある.

擁壁に作用する衝撃力は、土砂の粒度や量だけで なく壁の背面の表面形状の影響を大きく受ける可能性 がある.エネルギー吸収型対策工と同様、条件の異な る崩壊事例の再現解析や実験により、本結果を検証す ることが必要と考えられる.

謝辞:エネルギー吸収型対策工の解析では、筑波大学 システム情報工学研究科構造エネルギー工学専攻の 松島亘志准教授の作成した DEM コードを活用させて いただきました.深く御礼申し上げます.

参考文献

- 1)倉岡千郎・中島祐一:粒状体個別要素法による崩土の衝撃 荷重のシミュレーション, 平成17年度砂防学会研究発表会 概要集.
- 2)小山内信智・内田太郎・倉岡千郎・中島祐一・杉山実:個別 要素法を用いた流下土砂の構造物に作用する荷重に関す る数値計算,平成18年度砂防学会研究発表会概要集.
- 3) 芦田和男・江頭進治・神矢弘・佐々木浩:斜面における土塊 の抵抗則と移動速度,京都大学防災研究所年報, NO.28B-2, 1985.
- 4) 芦田和男・江頭進治・神矢弘: 斜面における土塊の滑動・停止機構に関する研究, 京都大学防災研究所年報, NO.27B-2, 1984.

5)日本道路協会:落石対策便覧.

6)内田太郎・曽我部匡敏・寺田秀樹・松田義則・吉川修一・亀田信康:崩土の衝撃荷重の時間変化に関する実験的研究, 平成16年度砂防学会研究発表会,2004.

(2008.5.16 受付)