土石流の警戒雨量と情報伝達

CRITICAL RAINFALL AND INFORMATION

平野宗夫'・森山聡之'
Muneo HIRANO and Toshiyuki MORIYAMA

1 九州大学 名誉教授（〒812-8581 福岡市東区箱崎 6-10-1）
2 岐阜大学 工学部環境建設工学科（〒860-0072 熊本市池田 4-22-1）

1. はじめに

前回２００２年８月２日の本シンポジウムには多数の参加者があり、熱心に発表と講義が行われた。非常に盛況であったため、適当な間隔でシンポジウムを九州で行っていただければ、参加者のレベルアップが確実に行えるのではないかと思っていたが、再び開かることになり喜ばしい限りである。しかし、前回のシンポジウム中には、一時間雨量と累加雨量の2変数の雨量で土砂災害予測をされている例が多数見受けられたのが気になった。そこで、これらの問題点を明らかにするとともにそれに代わる発生限界雨量の理論について述べる。また２００３年７月に水俣と義町で土石流が発生し、貴重な人命が失われた。このあと情報の伝達がうまく行かなかったような報道がなされた。この点に関しても若干述べたいと思う。

2. 土石流の発生限界降雨とその推定法

2.1 発生限界降雨に関する理論

図一に示すように、厚さD、長さl、勾配角θの斜面に強度rの降雨があり、浸透流と表面流が発生している場合を考える。

堆積土砂の密度をC*、土砂および水の密度をそれぞれσおよびρ、表面流の水深をh、重力の加速度をgとすると、表層からaの深さの点においてそれより上にある土砂と水の単位面積当たり重量の合計は

\[C* \sigma a g + \left(1 - C* \right) \rho a + \rho h \]

である。斜面方向に堆積土砂を滑らそうとする力はこれにsinθを掛けたものであり、水を含むと土砂は重くなり、滑らそうとする力は増大する。

2.2.1 斜面の模式図

一方、滑りに抵抗するのは土砂の粘着力と摩擦力であり、粘着力をc、摩擦係数を tan φとして下式

\[c + C* \sigma (\sigma - \rho) \alpha g \cos \theta \tan \varphi \]

で表される。浸透流が発生すると土砂に浮力（浸透流の方向に垂直な水圧）が働き摩擦力はその分減少する。

このように斜面の土砂が水を含むと、滑らそうすると力は増大し抵抗力は逆に減少するため滑り易くなる。これがTVなどで報道される「地盤が緩む」ということの実態であると思われる。

上記の滑らそうすると力が抵抗力を上回ると土砂崩壊が始まるから、崩壊条件として次式が得られる。

\[\tan \theta \geq \frac{c + C* \sigma (\sigma - \rho) \alpha g \cos \theta}{C* (\sigma - 1) + 1 + h} \]

上式を満足する勾配において、深さaより上層の土砂が滑動することになるが、aが堆積物の粒径dより大きい（a ≥ d）ことが必要である。また、水深hがaより大きい（h ≥ a）とき粒子が流動層全体に分散されて土石流となると考えられている。そこで、a = d、h = 0とする、通常の土砂における値C* = 0.6、tan φ = 0.8、c = 0、およびσ/ρ = 2.65を（3）式に代入すると、θ ≥ 14.8°となる。
これは、実際の土石流が15°程度以上の勾配で発生しているという経験的事実に一致する。

2.2 土石流発生限界降雨

上述の式を基にして、発生限界降雨を与える式を導くのに、2つの方法がある。1つは、表面流の水深が$h_{u}=d$となる流量を発生限界流量とするものので、芦田らは表面流量に合式を適用して流域における土石流の発生限界流量を与えた。しかし実際の堆積物の表面は図1に示されるように滑らかではなく、少なくとも粒径の数倍程度の凹凸が存在する。このため、斜面や河床の広い範囲にわたって$d=h_{u}$という条件が満たされることにより、実流の水深が表面に達すると局所的に表面流が発生して崩壊が始まるということになる。したがって、崩壊の発生限界降雨は浸透流に関する連続の式とDarceyの式を解くことにより次式のように導かれる。

\[r_{T}(t) = \frac{1}{T} \int_{-T}^{T} r(\tau)d\tau \geq \frac{3Q}{fA} \tan \theta \tag{4} \]

ここに、Tは時間内の平均降雨強度、Tは到達時間、rは降雨強度、Dは体積土砂の厚さ、lは斜面長、およびkは透水係数である。

（4）式の適用性は人工降雨装置を用いた室内実験によって確かめられている。同式において、Dを斜面崩壊限界水深Hcと置き換えると斜面崩壊の限界雨量を表すことになる。

（4）式の右辺を、斜面に固有の値と考えると、土石流の発生は到達時間とその間の雨量によって規定されることになる。

2.3 限界降雨と流出モデル

（1）発生限界降雨と合理式

通常用いられる合理式を書き換えると

\[r_{T}(t) = \frac{1}{T} \int_{-T}^{T} r(\tau)d\tau = \frac{3Q}{fA} \tan \theta \tag{5} \]

となる。ここに、Qは流量である。上式は（4）式と同じ形になる。したがって、流出量がある限界を超えたとき土石流が発生することができる。このように土石流の発生限界と流出量（特に中流流出）は同じ形で表されるので、土石流発生限界推定法が各種の流出モデルと類似したものが多いのはうなづけることである。

（2）線形貯水池モデルと実効雨量

図2に示される一段の線形貯水池モデルにおいて、

\[s = q \]

図2 鋼形貯水池概念図

連続の式と流出の式はそれぞれ

\[\frac{ds}{dt} = r - q \quad \text{および} \quad q = cs \tag{6} \]

で表される。ここで、sは流域における水の貯留量、qは流出量、αは定数である。上式の解は

\[s(t) = \int_{0}^{t} \exp(-\alpha \tau) r(t-\tau)d\tau \tag{7} \]

である。

鉱水は上式を実行雨量と定義し、実効雨量がある限界値を超えると土石流土砂災害が発生するとした。しかし「実効雨量」などという意味の曖昧な定義を使用するより「線形貯水池の水深」という方がずっと分かりやすいと思われるようであろうか。

砂防関係では上式を離散化した

\[s(t) = \sum_{i=0}^{m} b_i r(t-i) \tag{8} \]

が実効雨量の定義として用いられている。ここに、

（3）タンクモデル

流出解析におけるタンクモデルは、線形貯水池を発展させたものであり、高い実用性を有している。したがって、土砂災害の予測タンクモデルによる土砂災害の予測を7,8)も、線形貯水池のそれより高い実用性が期待できる。最近は気象庁がタンクモデルによる土砂災害の予報を開始している。しかし同定すべきパラメータが多いため、多くのデータを集積して検証する必要がある。

（4）直前の雨量と累加（または実効）雨量で予測
する手法

平野は流出解析における特性曲線法を土石流に拡張して洪水と土石流の流出を統一的に表すモデルを導いた。原田らもそれに基づいて土石流の流量を次式で表し、雲仙水無川の土石流に適用した。

\[Q(t) = \frac{1}{M} Ar(t) \int_{t_0}^{t} r(t') \, dt' \] (9)

ここで、Mは長さの次元を持つパラメータである。すなわち土石流の流量は直前の降雨強度と積算雨量の積に規定される。したがってMが一定であれば、直前の降雨強度と積算雨量を両軸とする平面において、下に凸の双曲線は土石流の流出強度（Q/A）一定値を示すことになる（図3参照）。つまり、このような平面上で分岐されるのは、発生限界ではなく災害の規模であると考えられる。

2.4 ニューラルネットワーク利用した土石流の予測

一般的に土石流は発生領域が低いので、データの乏しいのが普通である。したがって、予測システムの構築・運用に際しては、その後のデータによりシステムを修正する自己学習機能を持たせることが望ましい。このような観点から森らはニューラルネットワークを利用した土石流予測システムを開発し、雲仙・水無川の土石流に適用して良好な結果を与えた。

また、河原らはGMID（Group Method of Data Handling）により土石流の流出解析を行っている。

オンライン予測を行うためのシステムを作成するにあたりは、このような情報論的手法の導入が重要であると考えられる。

3. 2003年水俣土石流解析

土石流の解析法として（5）式を用いた。ただ、今回は熊本県の資料が入手出来なかったので、隣接する鹿児島県の出水・阿久根地区の土石流発生・不発生データと気象庁の時間雨量、それに水俣湾川のデータは鹿児島県雨量・気象情報サービスの時間雨量を用いた。1997年に土石流災害が起こった出水と今回の一の水俣の災害現場は10km程度しか離れておらず、地質的にも似たような状況であると判断して解析を試みた。この雨量は、雨が多かった1996年・1971年・1993年・1997年のデータを用いている。ただし土石流が発生した雨量のうちアメダス観測点と土石流発生地点の距離が10kmを超えている場合は相関が高いと考え、除外している。その結果を図4に示す。

図4 阿久根水俣地区の最大累加雨量

これから、土石流発生の上限と不発生の下限を抜き出し、水俣湾川の累加雨量曲線のうち、土石流災害が起こった前後（午前3時・午前4時・午前5時）の累加雨量曲線を追加したものが図5である。図5では、累加時間1～4時間で発生の上限と不発
4. 防災情報の伝達

現在の防災情報の伝達は、たとえば注意報・警報等は気象庁→各都道府県→市町村→消防→住民の自律ルートで伝えられる。別途、気象庁→マスコミ（放送）→住民というマスコミルートが存在する。今回は、2番目のマスコミルートが深夜であるということで、住民は就寝中であり、ほとんど役に立ちなかった。前回触れられた防災情報を伝えるインターネットのホームページも深夜に閲覧する人はそんなにいたかったのではないかと推察される。そして自治体ルートがどこかでうまく働いてなかったのではという問題が検証されている。

元来、システムというものは、100パーセントうまく動作するとは考えられず、かなりずどこかが動作しないというのは実際的な常識である。人間が数個絡めば人為的ミスが発生する可能性を考慮に入れるべきである。したがって、防災情報システムとしては複数の情報伝達経路を用意するのが当然であろうし、県市町村によってはそのような対策を取っているところもある。特に土石流のような速い現象の場合は人間を介さず警告を伝達するシステムとし、避難の判断は自主的に住民が行うほうが望ましいと考えられる。以下に、情報伝達経路のいくつかを検討する。

4.1 携帯電話

だれもが真っ先に思い付くのが、この携帯電話である。しかし、現在の携帯電話のシステムは基本的には固定電話と同様で災害発生時には「ブロック」が発生し、極めて電話がかかりにくい状態になる事は広く知られている。このため携帯電話だけに頼るのはきわめて危険である。NTT Docomoでは災害時に備え音声とパケットを分離した形で運用する研究を開始していると聞く。GPSを搭載できる携帯電話もあることから、電話の現在位置を割り出して、危険な地域にいる住民のみにメール等を早めに発信することとは技術的には可能である。これを豪雨災害発生前の情報伝達経路の一つとするば、個人向け防災情報システムの一翼を担うことが可能であろう。

4.2 防災無線

防災無線は、「夜に立った」という地域と「夜に立たなかった」といわれる地域があるようである。前者は各戸に防災無線の受信装置を設置していた場合で、後者は集落ごとにスピーカーで放送する方式を取った場合ではないかと推察される。この場合、豪雨の雨脚が強くなると、音声が伝わりにくくなる。したがって、屋外拡声器ではなく戸別受信機による方法が豪雨災害では有用と考えられる。今後は音声だけでなく、TVの防災チャンネルやパーソンナル起動可能な仕組みも考えられる。

4.3 インターネット

プロードバンドといわれる大容量帯域接続型のインターネットユーザは人口の5パーセントを越えてばかりで、その多くは都市に住んでいる住民である。残りの5パーセント近辺のユーザは、都市以外の地区に住んでおり、その多くが自宅電話をかけ接続するダイアルアップ方式であるため、時時情
報を伝達可能な状態には無い。また常時接続でも、通常使用しない場合はパソコンの電源は切られるのが常であるため、この点も問題である。

まず、常時接続の問題であるが、日本政府はe-Japan2計画に基づき、全国に高速常時接続型のプロードバンド回線を張り巡らす措置をとりつつある。これにより、簡単に問題が解決しそうであるが、やはり「ラストワンマイル」つまり住民に届けた最後の部分がネックになっている。それを作戦負担の問題が大きい。例えば水害では都市部に光ファイバーが設置されているが、山間部は電気もない。仮に補助金などで線が各戸までやってきても維持費が必要である。特に山間部では回線を維持するためのコスト負担が高いし、既設の電話線を利用するとADSLも距離が伸びると急速にスピードがダウンする。台風時には線も切れやすい。そこで注目されているのが、無線LAN技術を利用した無線インターネットである。熊本県の阿蘇郡では、広島市光ファイバーを引き、そこから町の建物や小中学校等に無線インターネットで接続している。これに有線に比べた1/10程度の設置費と維持費は不要である。ただ、無線LANの周波数は2.4GHzとある程度高いため、豪雨時には切断が可能な可能性がある。そのため回線設計に余裕を持たせたり、複数経路を用いるようにする必要があるだろう。

パソコンの電源を入れる方法としては、WOLといわれる仕組みにパソコンが対応していれば、ルータから特定の信号を流すことでパソコンの電源を入れることも可能になる。今後、最初からこのような仕組みを組み込んだパソコンを「推奨」することで、ある程度深夜の情報伝達が可能になると思われる。

また、携帯電話同様、無線LAN対応の携帯端末（PDA等）にGPSユニットを接続することで、個人向けの防災情報システムを開発することが可能であると思われる。また、インターネットでは多くのアクセスが一度に発生してもサービスの容量を超えなければ速度が低下するだけでネットワークは動きつづけるので、幅広い状況の電話回線よりはずいぶん使えるものと期待される。しかし、インターネット等の情報は住民はおろか防災担当者さえ災害時にのみアクセスすることはないので、常時使用している情報システムの一部として日頃から使用するような体制が望ましいと考える。

5. 防災教育

防災行政の課題として、「土石流などの専門職員の不在」を挙げている市町村が、熊本県で52.8%、鹿児島県で44.9%に上っている。今後、「学」としても豪雨災害に関する専門知識に関する講習会等を実施する必要があると考える。本当に土砂災害予測で必要なものは、端末に表示されるその瞬間のレーダー雨量ではなく、各地域の地域特性に応じた到達時間内の累加雨量である。そして、予測システムから出力されるのはあくまで「危険度」であり、10回に何回かは外れる（空振り）し、見逃しても良いと説明する必要があると思われる。このためには、地方自治体の専門職員の養成のみならず、地域住民に対しても何らかの形で専門知識の伝達と意見交流が必要であろう。

6. 水害防災無線ネット

筆者の一人が代表をつとめる防災情報システム研究会では2003年3月19日に、土石災害現場現場そばの葛笑館で防災情報システムシンポジウムを開催した。それから約1ヶ月後の2004年4月末に、科学研究費補助金(B)(1)に「ITを利用した防災情報システムの構築に関する研究—水害流災をモデル地区として」（代表coat、森山聡之）が採択された。これは当研究会の趣旨をそのまま実行することが可能なため、当初申請のメンバーに本研究会のメンバーを加えて水防災無線ネットの構築と実験を平成16年度から17年度にかけて行う予定であり、具体的な内容は以下のとおりである。

（1）河川情報センターから5分間速で1kmメッシュでデータを受信

河川情報センターからのデータは国土数値情報の3次メッシュに準拠したメッシュサイズで提供される。時間間隔も5分に1回と、ピボポイントのデータを短い時間間隔で提供するため早期の土石流予測が必要な用件を十分満たしている。5分間の間にレーダーのスキャンが2回雨量観測を行っているので高い精度を誇っている。

（2）XMLデータベースの構築

汎用の情報交換フォーマットとして近年普及しているXMLを利用することで、柔軟性の高い「ドラえもんのポケット」型のデータベースを構築している。

（3）土石流予測エンジンの構築

前述のニューラルネットを用いた土石流予測エンジンを作製する。

（4）移動端末位置検出システムの開発
GPSの接続している端末あるいは携帯電話から位置情報を送ってもらい、現在位置のみを保存する。
（5）GPSと無線LAN/PHS/携帯を使った警告システム
上記情報検出システムによる位置情報を利用して、土石流発生の可能性が高まった時点で、警告メールを送ることが可能になる。
（6）無線リンクによる山間部のブロードバンド化
水俣の山間部では、ADSLは距離が遠くて使えない。携帯用NTTとVoda Foneが宝河内地区でつかえるだけで、GPS携帯に力を入れているauの携帯はほとんど使えない。したがって、何らかの形で常時接続型の防災無線ネットが必要になる。このため、深川郵便局付近まで来る光ファイバと接続する無線ルーターが山の上に設置して、防災無線ネットを設置する
（7）デジタル放送型無線インターネット
常時は、無線ネットのブロードバンド接続を生かし、インターネットテレビやインターネットラジオを使って地域の情報を発信する。この放送に割り込む形で防災情報を流す。全ての地点ではなく、無線アクセスポイントの位置はわかかるので、危険なアクセスポイントにいる端末にのみ割り込みをかける。
（8）住民との対話
住民が自主防災組織を作り、それを防災情報をアシスントするのが本来の姿であろう。
（9）防災の教材を作る
e-learningによる「レーダ雨量」の学習などが出来ればと考えている。

7. おわりに

今後は現場と一緒になって「今できること」の手伝いができると思うので、水害防災無線ネットかや「レーダ雨量」の勉強会等の準備を進めていく。詳細はhttp://www.0disaster.net/に掲載していく予定である。

謝辞：土石流発生データは県央災害防災課より提供していただいた。また、水俣深川の雨量は、熊本県県議会気象情報サービスより入手した。このさい、東北大学の小山先生の手はずをした。ここに記して謝意を表す。

参考文献
1）高橋保（1977）：土石流の発生と流動に関する研究、京都大学防災研究所年報、第20号、B-2
2）芦田和男・高橋保・検挙一（1978）：土石流の災害度の評価方法に関する研究、京都大学防災研究所年報、第21号、B-2
3）平野宗夫・岩元賢・原田民司郎（1976）：人工降雨による土石流の発生機構に関する研究、第31回土木学会年次学術講演会概要集
4）鈴木雅一・小橋澄治（1981）：かけ崩れ発生と降雨の関係について、新穂結、Vol.34、No.2
5）鈴木雅一・福島幸弘・武居有恒・小橋澄治（1979）：土砂災害発生の危険雨量、新穂結
6）道上正規、小島英司（1980）：豪雨によるかけ崩れの発生予測について、第17回自然災害科学シンポジウム講演会論文集
7）平野宗夫（1992）：土砂災発生予測と流出解析、土砂移動現象に関するシンポジウム論文集
8）原田民司郎、平野宗夫、川原恵一郎（1999）：雲仙・水無川における土砂災の流出特性と解析解析、新穂結、Vol.52、No.1
9）網干寿夫（1972）：集中豪雨と土斜面の崩壊、技術試楽、Vol.5、No.11
10）現在は、今泉文寿・土屋幸之助・遠坂興宏（2004）：土砂災の発生に関わる浸水堆積物と降雨条件についての検討、自然災害科学、Vol.23、No.1
11）建設省河川局防災部（1984）：総合土石流対策指針（II）
12）たとえば、平野宗夫（1999）：降雨による土石流の発生予測と流出解析、土木学会、水工学シリーズ、99-A-5
13）森山聡之：「防災情報システム（1）〜（4）」西部地区災害軽報センターニュースセンターニュースNo.27-30
14）森山聡之・平野宗夫・上松泰介・川原恵一郎・白川朋道（1992）：ニューラルネットワークを用いた土石流発生予測について、水工学論文集第36巻
15）河原恵一郎・森山聡之・高橋洋（1997）：ソフトコンピューティングによる土石流のデータ解析、水工学論文集第41巻
16）高橋和雄：水俣市の土石流におけるソフト面の調査、2003年7月九州地方豪雨災害シンポジウム
17）http://www.pref.kumamoto.jp/existence/kishou/enkou.htm

（2004.6.18受付）