水理模型実験中の礫浜の地形変化を 経時的に捉えるための3次元地形計測手法の 構築と有用性の検討

研究背景

ロ水理模型実験における地形計測

計測機器	レーザ距離計	TSL 地上レーザスキャナ
計測対象	線・点	線・面
計測時間	長	長
精度	高	高
費用	高	高

- ▶ 造波中の地形撮影のために造波を止める
- ▶ 酒井ら(2019):カメラ画像から水路内の地形の断面形状を画像解 析により抽出する手法を構築

▶ 任意断面の形状が不明・沿岸方向の地形変化まではみられない

既往の研究

ロ既往の研究:本杉ら(2022)

造波実験中にUSBカメラを用いて撮影した礫浜斜面の 画像から地形変化を計測する手法を構築

▲ オルソモザイク画像

- ▲ 水路中央における断面地形
- ▶ 10秒間隔で3時間撮影
 ▶ 地形を計測できたモデル は10/1081セット未満

▲ 水路中央における*t* = 85.8 minの断面地形

ロ地形変化・波の遡上形態の差異

▶ カメラ12台で造波中の地形を同時刻撮影 ➡ 撮影画像の転送に遅延
 ▶ 画像間で地形変化や波の遡上形態に差異が生じた

▶ モデル構築に使用可能な画像や地形計測が可能なモデルが限定

口目的

▶ 3次元地形計測手法の改良・モデルの再現性の向上

▶ 礫浜の地形計測手法の確立

口 改良前

▶ USBカメラ / USB接続
 ▶ カメラ本体で画像処理

□ 改良後

- ▶ Arducamカメラ / CSI接続
- ▶ Raspberry Pi 3Bに接続

ロ改良前後の比較

▶ 撮影後に画像をメモリへ転送

▲USBカメラ

▲ Arducamカメラ ▲ Raspberry Pi 3B

項目	転送速度 [Mbps]	撮影範囲 [m²/台]	カメラ [台]	重複率 [%]	画素数 [万画素]	撮影間隔 [s]
改良前	300	1.026	24	80	800	10
改良後	1200	1.131	16	90	1600	30

実験概要

▲ Arducamカメラの固定

口 撮影条件

Case	照明	レーザ
1	×	×
2	\bigcirc	×
3	×	\bigcirc
4	\bigcirc	\bigcirc

照明 礫浜地表面の陰影や明暗 差の解消を試みる

口 撮影手順

造波前の地形(排水状態)撮影

波高H=8.0cm, 周期T=2.0sの 規則波を3時間作用

□ 解析手順

- ➤ Agisoft Metashapeにて撮影画 像から3次元モデルを構築
- ➤ モデルの再現性に影響する 「写真のアラインメント」の 精度を「最高・高・中・低」 に変更

▲ オルソモザイク画像

検証点の位置座標を計測

- ▶ 実測値:トータルステーション
- ▶ 計測値:地理情報システムQGIS

座標値の抽出

➤ XY座標:オルソモザイク画像
 ➤ Z座標:数値表層モデルDSM

▲ オルソモザイク画像(検証点)

ロ XY 座標のRMSE

精度	座標	造波前 [cm]	造波後 [cm]	
早古	X	0.6	0.4	
取同	Y	0.7	0.7	
高	X	0.6	0.3	
	Y	0.6	0.6	
њ	X	0.7	0.6	0.30 0.20 0.10
44	Y	0.5	0.5	$\begin{bmatrix} 0.00 \\ \sim -0.10 \\ -0.20 \end{bmatrix}$
任	X	0.4	0.5	-0.30 -1
卫	Y	0.5	0.5	

全	精	度	に	お	い	て	0.7	7 C	m	以	
ア	ラ	イ	ン	×	ン	\vdash	の	精	度	に	よ
Ġ	ず	検	証	点	を	抽	出	す	3	た	め
<mark>ወ</mark>	ネ	ッ	ト	が	特	徴	点	の	役	割	を
L	た	可	能	性							

▲ オルソモザイク画像(ネット敷設)

ロZ座標のRMSE

精度	撮影条件	造波前 [cm]	造波後 [cm]
	1	0.6	0.6
最高	2	0.7	0.6
	3	0.8	0.6
	1	0.6	0.5
高	2	0.7	0.5
	3	0.8	0.6
	1	1.9	1.7
中	2	1.8	1.6
	3	2.3	2.3
	1	2.1	1.8
低	2	1.7	1.6
	3	1.6	2.1

礫浜表面には際立つ特徴点が
極めて少ない

▶アラインメントの精度が高く なると特徴点を多く抽出

解析条件

アラインメントの精度「高」

撮影条件

照明・レーザを使用しない Case 1

> 本杉ら(2022) *Z*座標のRMSE = 1.0 cm

全座標のRMSE = 0.6 cm

口 計測手順

- ▶ 波浪条件と計測精度への影響
- ▶ 規則波を3時間作用▶ 30秒間隔で撮影

▶1ケース361個のモデルを構築

口 波浪条件

Wave	水深 <i>h</i> [cm]	波高 <i>H</i> [cm]	周期 T [s]
1	40	8.0	2.0
2	40	6.0	1.7
3	40	4.0	1.5

▲ 水路中央における初期地形断面

ロ地形の再現性

- ▶ 波の遡上がない範囲
- ➢ 初期地形の標高を正とし、 各時刻の標高のRMSEを評価
- ▶ 遡上波の影響がない範囲の 地形の再現性を確認

Wave	RMSE 0.6 cm以上 のデータ数
1	7/361
2	13/361
3	2/361

▲ 水路中央における断面地形の時間変化

ロ精度検証範囲外の地形

14/18

- ▶ 経時的にバームが形成されていく過程が観察できる
- ▶ 注水状態でも、水面の影響を受けない範囲の地形の再現性を確認

▲ 水路内の標高の時間変化を示すDSM

▲ 水路中央の断面地形変化の様子

時々刻々と変化する礫浜地形を任意時刻で可視化・計測可能

ロ 最終地形における汀線位置の変化

▶ 最終地形のDSMよりz=0.00mの地点を抽出

Wave 1

➤ x>0.00 mの範囲にも礫が堆積した影響で汀線が前進
Wave 3

▶ 沿岸方向に汀線が変化

1測線の計測では把握できない地形変化を捉えることが可能

□ 最大標高の位置・高さの時間的変化

- ▶ 陸域(-0.50 m<t<0.00 m)
- ▶ 最大標高の位置:点
- ▶ 標高値:色

▲ 最大標高の位置と高さの時間的変化

□ 最大標高の位置・高さの時間的変化

▶ 波高・周期が大

➡時間経過とともに最大標高値が増加し、地形の平衡化に時間を要する

任意範囲で時々刻々と変化する最大標高の位置・高さの計測が可能

▲ 最大標高の位置と高さの時間的変化

ロ 堆積量の時間的変化

- ▶ 3次元モデルからDSMを抽出
- ▶ 初期地形の堆積量を基準
- ▶ 振動:入射波の影響

Wave 1

- ▶ 堆積量が一定になる時間が最 も遅い
- ▶ t=180minの堆積量はWave 3 の約6倍

任意範囲における堆積量の時間変 化の算出が可能

▲ 堆積量の時間的変化

ロ3次元地形計測手法の高精度化

- ▶ 画像転送速度の向上により同時刻撮影が可能
- ▶ 照明やレーザを使用せず、「写真のアラインメント」の精度 を「高」とすることでモデルの精度が向上
- ▶ 造波前後の地形に対する本手法のRMSEは0.6 cmと計測精度が 向上し、造波中も水面の影響を受けない範囲の妥当性を確認

ロ3次元地形計測手法の有用性

▶ 任意時刻・範囲における断面地形・汀線位置・経時的な最大標高の位置や高さ・堆積量を定量的に計測可能

ロ 礫浜以外での計測

- ▶ モデルの構築には撮影画像内の特徴点が重要
- ▶ モデルの精度は底質の影響も受けると考えられる

ご清聴ありがとうございました

