Roadmap of the session: Systems Resilience and Economic Impact

Hirokazu Tatano Disaster Prevention Research Institute Kyoto University

Disaster Prevention Research Institute, Kyoto University

Resilience Research

- Socio/Eco-Systems Research
 - Holling(1973) "Resilience and Stability of Ecological Systems"
 - Resilience determines the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters, and still persist.
- Disaster research(Geography)
 - Cutter, etal (2008) "A place-based model for understanding community resilience to natural disasters" Global Env. Change
- Economic Resilience
 - Rose&Liao (2005) "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions", J. Regional Science
 - economic resilience—reduced consequences of failure through the innate aspects of the economic system at all levels to cushion itself against losses in a given period.
- Engineering
 - Breneu, et.al., (2003) "A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities", Earthquake Spectra, 19(4)
 - ✓ Resilience can be understood as the ability of the system to reduce the chances of a shock, to absorb a shock if it occurs (abrupt reduction of performance) and to recover quickly after a shock (re-establish normal performance).

Engineering (Structural Resilience)

- Breneu, et.al.,(2003) "A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities", Earthquake Spectra, 19(4)
- Resilience can be understood as the ability of the system to reduce the chances of a shock, to absorb a shock if it occurs (abrupt reduction of performance) and to recover quickly after a shock (re-establish normal performance).

Economic Resilience(Rose 2004)

- Static:
 - General Definition: Ability of a system to *maintain function* when shocked.
 - Econ Definition: Efficient use of remaining resources at a given point in time to produce as much as possible.
- Dynamic
 - General: Ability & speed of a system to recover.
 - Economic: *Efficient* use of resources *over time* for investment in repair and reconstruction, including expediting the process & adapting to change
- Metric: averted losses as % of potential losses

In essence, *DER* is the % avoidance of a maximum disruption to a given shock

Economic Resilience

• Resilience : Bounce back

= Resistant capacity + Recovery capacity

Resilience

"Functionality" in stead of "production"

Disaster Prevention Research Institute, Kyoto University

How can we measure economic resilience in the outcome bases?

Conventional Framework of Loss Estimation

Total Loss = Direct Loss + Indirect Loss

What are the direct and indirect losses?

How can we estimate them?

Disaster Prevention Research Institute, Kyoto University

Damages in "STOCK"

- STOCKS: infrastructure, building, production capital, etc
- used repeatedly for producing services
- Value of STOCK :
 - Present value of a flow of services which will be produced in the future by the stock
- Economic losses in "STOCK":
 - Lost present value of services which could be produced by the damaged / lost stock

Direct Loss = Stock Loss 80% of "Stocks" are supposed to be lost by a disaster

Disaster Prevention Research Institute, Kyoto University

Indirect Loss

 Forgone flow of benefit (profit) which could be earned if the stock were not damaged, e.g., business interruption losses.

Indirect Loss

= Direct loss—Benefit of Restoration

 When we often talk about total losses, effects of two different events together: Earthquake and Restoration.

Disaster Prevention Research Institute, Kyoto University

Therefore,

• Total Loss (Economic Effect of the Earthquake and Restoration actions)

= Direct Loss - Net Benefit of Restoration

=Indirect Loss + Cost of Restoration

Restoration cost should be regarded as the direct loss ! !

Hanshin Awaji Earthquake: Restoration cost of highway bridges' pillars were 2-10 times larger than the construction cost.

Another consistent economic loss estimation method

Aggregation in a region

• During some sector will increase because of restoration, e.g., construction.

Question:

 Should we add the negative economic loss (=positive benefit) in such sectors to estimate consistent total economic loss in industrial sectors?

Restoration Demand and Loss estimation

Outcome of resilience

- Resilience 个
- Economic Loss (Total) \downarrow
- We regards the outcome based measure of resilience could be decrease of (total) economic loss (=BI loss + recovery cost).

Disaster Prevention Research Institute, Kyoto University

How significant?

• Resistance capacity vs Recovery capacity?

Post-Disaster Business Surveys in the area affected by the Great East Japan Earthquake: Summary of the regional and sectorial impacts

Hirokazu Tatano⁽¹⁾, Yoshio Kajitani⁽¹⁾, Tetsuya Tamaki⁽¹⁾, Makoto Okumura⁽²⁾

(1) DPRI, Kyoto University (2) IRIDeS, Tohoku University

Disaster Prevention Research Institute, Kyoto University

Post event surveys

	Survey 1	Survey 2		
area	Iwate, Miyagi	Akita, Aomori, Fukushima, Yamagata, Ibaragi, Tochigi. Chiba		
Period	NovDec. 2011	NovDec. 2012		
Method	Questionnaire mail survey	Questionnaire mail survey	s state	
List (address)	Teikoku Data Bank	Telephone Book 2012	*Survey did not	
Sampling	Random Sampling	Random Sampling	include	
Distribution	12,836	8,000	Tsunami	
Answered	2,669	1,289	and nuclear	
Ratio	20.8%	16.1%	accident	
Surveyors	DPRI, KU & CRIEPI	DPRI, KU & IRIDeS Tohoku U.	affected areas.	

Estimating "Decrease of Profit"

1. Estimating Revenue Recovery Process

Decrease of revenue accelerated with the initial inoperability (=inverse of functionality) of the industry.

2. Profit Recovery

Transforming Revenue recovery process into profit recovery process

2. Modification of Recovery Cost Ratio

Estimated Profit Decrease Ratio

Given initial functionality(=1-initial drop ratio of revenue), Profit Decrease Ratio for each industry is estimated.

		Initial Functionality				
	Industries		20%- 40%	40%- 60%	60%- 80%	80%- 100%
Manufac turing	Materials	7.06	2.81	1.99	1.08	0.187
	Processing and assembly	7.37	2.93	2.08	1.13	0.196
	Life related	7.13	2.83	2.01	1.09	0.189
Non- Manufac turing	Construction	7.14	2.79	2.41	1.15	0.0343
	Transportation	12.9	5.02	4.35	2.08	0.0618
	Wholesale/Retail	3.89	1.52	1.32	0.629	0.0187
	Finance, Insurance and Real estate	9.21	3.60	3.11	4.19	0.0443
	Service	13.6	5.30	4.59	2.19	0.0652

Estimated Profit Decrease Ratio

Estimated impact(Ground motion)

Estimated economic loss is 3.418 trillion JP Yen (Furuhashi, et.al.2013) (Million JPYen)

			(
	Decrease of Profit	Recovery Cost	Retirement cost	Total
Aomori	40,222	1,963	246	42,431
Iwate	154,736	16,656	2,264	174,017
Miyagi	355,694	50,089	9,703	415,186
Akita	17,581	907	97	18,585
Yamagata	65,341	5,902	763	72,006
Fukushima	449,909	45,259	7,828	502,996
Ibaragi	897,150	69,164	11,955	978,270
Tochigi	484,427	35,410	5,423	525,260
Chiba	642,059	40,475	6,414	688,949
Total	3,107,120	265,826	45,054	3,418,000

Summary and Discussion

The estimated loss is corresponding to 0.7% of Japanese GDP.

- About 5% of regional GDP in the affected area.
- At 2011, net GDP growth ration is -0.59%.

Recovery Cost is 10 times smaller than Business interruption cost by strong ground motion in the case of 2011 Great eastern Japan Earthquake.

Recover cost might be too small.

- Questionnaire survey based on random sampling leads small business intensive survey, which not including large companies.
 - By use of other sources, e.g., IR report for Tokyo Stock Exchange Market, can be used. (E.g., Furuhashi, 2012)
- Tsunami Nuclear Accident is not included.

Disaster Prevention Research Institute, Kyoto University

Challenges in this session

- Development of methodology
 - Infrastructure as a system of systems
 - From Component resilience to Infrastructure Resilience focusing its "functionality."
 - Integration of infrastructure resilience to "Economic Resilience"

Topics to be discussed

セッションのねらいと進行方法 Roadmap of the session

By Hirokazu Tatano

個別要素のレジリエンスから、システムのレジリエンスを構成するための方法と課題 Understanding the infrastructure resilience framework: interactions between system functionality, operability, service provision and economic activity

By Craig Davis

- システムのシステムとしてみたインフラシステムのレジリエンス計量化の可能性と課題 Challenges for assessing infrastructure resilience from the System of Systems perspective By Nobuoto Nojima
- ライフラインシステムの機能低下に伴う経済影響の計量化の方法と課題 Challenges in economic impact analysis to reflect lifeline resilience By Yoshio Kajitani
- 学術上・実務上の課題と取り組みの優先順位(総合討論) Discussion on academic and practical challenges and priority areas of collaboration

Disaster Prevention Research Institute, 🚽 Kyoto University

Discussion on challenges and priority areas of collaboration

- What are the key challenges for us to tackle with?
 - Identify the most important challenges in each areas
- What is the goal for us to set for the ASCE-JSCE research collaboration in this field?